Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation
A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that sy...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2020-10, Vol.114 (4), p.653-663 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 4 |
container_start_page | 653 |
container_title | Molecular microbiology |
container_volume | 114 |
creator | Machinandiarena, Federico Nakamatsu, Leandro Schujman, Gustavo E. de Mendoza, Diego Albanesi, Daniela |
description | A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram‐positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long‐chain acyl‐ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl‐ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl‐ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl‐CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram‐positive bacteria, that acyl‐ACPs are feedback inhibitors of the acetyl‐CoA carboxylase. Finally, we propose that the continuous production of malonyl‐CoA during phospholipid synthesis inhibition provides an additional mechanism for fine‐tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.
Obstructing PlsX activity in Bacillus subtilis leads to accumulation of long‐chain acyl‐ACPs and FASII inhibition. Continuous production of malonyl‐CoA causes overexpression of PlsX and PlsC that consume acyl‐ACP, alleviating FASII inhibition. |
doi_str_mv | 10.1111/mmi.14574 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2454081841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2454081841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3884-26c2549ba175c0aa864b8c59dc95be53576c95ac5cb736602766bcea9cd5c7943</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_AMS8MqLbknz0fRShtOBQxgK3tU0TbeMftmkjv57Mzu988DhnAMPz4EXgGuMptjXrCzNFFMW0RMwxoSzIIyZOAVjFDMUEBG-j8CFtTuEMEGcnIMRCXmERUTH4GOtv4w1zlQb6LYaqrprisNR5zCXzvVQKpNBV8NmW1vfhWn8bfvK09ZYaCqYSuV0ayTcG7eFC9msYas3XSGdqatLcJbLwuqr45yAt8XD6_wpeH55XM7vnwNFhKBByFXIaJxKHDGFpBScpkKxOFMxSzUjLOJ-k4qpNCKcozDiPFVaxipjKoopmYDbwdu09WenrUt2dddW_mUSUkaRwIJiT90NlGpra1udJ01rStn2CUbJIcvEZ5n8ZOnZm6OxS0ud_ZG_4XlgNgB7U-j-f1OyWi0H5TeoLn6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454081841</pqid></control><display><type>article</type><title>Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation</title><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Machinandiarena, Federico ; Nakamatsu, Leandro ; Schujman, Gustavo E. ; de Mendoza, Diego ; Albanesi, Daniela</creator><creatorcontrib>Machinandiarena, Federico ; Nakamatsu, Leandro ; Schujman, Gustavo E. ; de Mendoza, Diego ; Albanesi, Daniela</creatorcontrib><description>A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram‐positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long‐chain acyl‐ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl‐ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl‐ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl‐CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram‐positive bacteria, that acyl‐ACPs are feedback inhibitors of the acetyl‐CoA carboxylase. Finally, we propose that the continuous production of malonyl‐CoA during phospholipid synthesis inhibition provides an additional mechanism for fine‐tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.
Obstructing PlsX activity in Bacillus subtilis leads to accumulation of long‐chain acyl‐ACPs and FASII inhibition. Continuous production of malonyl‐CoA causes overexpression of PlsX and PlsC that consume acyl‐ACP, alleviating FASII inhibition.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14574</identifier><identifier>PMID: 32671874</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>acetyl‐CoA carboxylase ; Acid production ; acyl‐ACP ; Bacteria ; Continuous production ; Coordination ; Coupling ; Deactivation ; Depletion ; fatty acid kinase ; Fatty acid synthase II ; Fatty acids ; Fatty-acid synthase ; Feedback ; Gram‐positive bacteria ; Inactivation ; Inhibitors ; membrane biogenesis regulation ; Phosphatidic acid ; Phospholipids ; PlsX ; Synthesis ; Thioesterase</subject><ispartof>Molecular microbiology, 2020-10, Vol.114 (4), p.653-663</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3884-26c2549ba175c0aa864b8c59dc95be53576c95ac5cb736602766bcea9cd5c7943</citedby><cites>FETCH-LOGICAL-c3884-26c2549ba175c0aa864b8c59dc95be53576c95ac5cb736602766bcea9cd5c7943</cites><orcidid>0000-0003-4380-9152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14574$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14574$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32671874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machinandiarena, Federico</creatorcontrib><creatorcontrib>Nakamatsu, Leandro</creatorcontrib><creatorcontrib>Schujman, Gustavo E.</creatorcontrib><creatorcontrib>de Mendoza, Diego</creatorcontrib><creatorcontrib>Albanesi, Daniela</creatorcontrib><title>Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram‐positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long‐chain acyl‐ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl‐ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl‐ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl‐CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram‐positive bacteria, that acyl‐ACPs are feedback inhibitors of the acetyl‐CoA carboxylase. Finally, we propose that the continuous production of malonyl‐CoA during phospholipid synthesis inhibition provides an additional mechanism for fine‐tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.
Obstructing PlsX activity in Bacillus subtilis leads to accumulation of long‐chain acyl‐ACPs and FASII inhibition. Continuous production of malonyl‐CoA causes overexpression of PlsX and PlsC that consume acyl‐ACP, alleviating FASII inhibition.</description><subject>acetyl‐CoA carboxylase</subject><subject>Acid production</subject><subject>acyl‐ACP</subject><subject>Bacteria</subject><subject>Continuous production</subject><subject>Coordination</subject><subject>Coupling</subject><subject>Deactivation</subject><subject>Depletion</subject><subject>fatty acid kinase</subject><subject>Fatty acid synthase II</subject><subject>Fatty acids</subject><subject>Fatty-acid synthase</subject><subject>Feedback</subject><subject>Gram‐positive bacteria</subject><subject>Inactivation</subject><subject>Inhibitors</subject><subject>membrane biogenesis regulation</subject><subject>Phosphatidic acid</subject><subject>Phospholipids</subject><subject>PlsX</subject><subject>Synthesis</subject><subject>Thioesterase</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMobk4v_AMS8MqLbknz0fRShtOBQxgK3tU0TbeMftmkjv57Mzu988DhnAMPz4EXgGuMptjXrCzNFFMW0RMwxoSzIIyZOAVjFDMUEBG-j8CFtTuEMEGcnIMRCXmERUTH4GOtv4w1zlQb6LYaqrprisNR5zCXzvVQKpNBV8NmW1vfhWn8bfvK09ZYaCqYSuV0ayTcG7eFC9msYas3XSGdqatLcJbLwuqr45yAt8XD6_wpeH55XM7vnwNFhKBByFXIaJxKHDGFpBScpkKxOFMxSzUjLOJ-k4qpNCKcozDiPFVaxipjKoopmYDbwdu09WenrUt2dddW_mUSUkaRwIJiT90NlGpra1udJ01rStn2CUbJIcvEZ5n8ZOnZm6OxS0ud_ZG_4XlgNgB7U-j-f1OyWi0H5TeoLn6I</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Machinandiarena, Federico</creator><creator>Nakamatsu, Leandro</creator><creator>Schujman, Gustavo E.</creator><creator>de Mendoza, Diego</creator><creator>Albanesi, Daniela</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-4380-9152</orcidid></search><sort><creationdate>202010</creationdate><title>Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation</title><author>Machinandiarena, Federico ; Nakamatsu, Leandro ; Schujman, Gustavo E. ; de Mendoza, Diego ; Albanesi, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3884-26c2549ba175c0aa864b8c59dc95be53576c95ac5cb736602766bcea9cd5c7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>acetyl‐CoA carboxylase</topic><topic>Acid production</topic><topic>acyl‐ACP</topic><topic>Bacteria</topic><topic>Continuous production</topic><topic>Coordination</topic><topic>Coupling</topic><topic>Deactivation</topic><topic>Depletion</topic><topic>fatty acid kinase</topic><topic>Fatty acid synthase II</topic><topic>Fatty acids</topic><topic>Fatty-acid synthase</topic><topic>Feedback</topic><topic>Gram‐positive bacteria</topic><topic>Inactivation</topic><topic>Inhibitors</topic><topic>membrane biogenesis regulation</topic><topic>Phosphatidic acid</topic><topic>Phospholipids</topic><topic>PlsX</topic><topic>Synthesis</topic><topic>Thioesterase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machinandiarena, Federico</creatorcontrib><creatorcontrib>Nakamatsu, Leandro</creatorcontrib><creatorcontrib>Schujman, Gustavo E.</creatorcontrib><creatorcontrib>de Mendoza, Diego</creatorcontrib><creatorcontrib>Albanesi, Daniela</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machinandiarena, Federico</au><au>Nakamatsu, Leandro</au><au>Schujman, Gustavo E.</au><au>de Mendoza, Diego</au><au>Albanesi, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>114</volume><issue>4</issue><spage>653</spage><epage>663</epage><pages>653-663</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>A key aspect in membrane biogenesis is the coordination of fatty acid to phospholipid synthesis rates. In most bacteria, PlsX is the first enzyme of the phosphatidic acid synthesis pathway, the common precursor of all phospholipids. Previously, we proposed that PlsX is a key regulatory point that synchronizes the fatty acid synthase II with phospholipid synthesis in Bacillus subtilis. However, understanding the basis of such coordination mechanism remained a challenge in Gram‐positive bacteria. Here, we show that the inhibition of fatty acid and phospholipid synthesis caused by PlsX depletion leads to the accumulation of long‐chain acyl‐ACPs, the end products of the fatty acid synthase II. Hydrolysis of the acyl‐ACP pool by heterologous expression of a cytosolic thioesterase relieves the inhibition of fatty acid synthesis, indicating that acyl‐ACPs are feedback inhibitors of this metabolic route. Unexpectedly, inactivation of PlsX triggers a large increase of malonyl‐CoA leading to induction of the fap regulon. This finding discards the hypothesis, proposed for B. subtilis and extended to other Gram‐positive bacteria, that acyl‐ACPs are feedback inhibitors of the acetyl‐CoA carboxylase. Finally, we propose that the continuous production of malonyl‐CoA during phospholipid synthesis inhibition provides an additional mechanism for fine‐tuning the coupling between phospholipid and fatty acid production in bacteria with FapR regulation.
Obstructing PlsX activity in Bacillus subtilis leads to accumulation of long‐chain acyl‐ACPs and FASII inhibition. Continuous production of malonyl‐CoA causes overexpression of PlsX and PlsC that consume acyl‐ACP, alleviating FASII inhibition.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32671874</pmid><doi>10.1111/mmi.14574</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4380-9152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2020-10, Vol.114 (4), p.653-663 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_journals_2454081841 |
source | Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | acetyl‐CoA carboxylase Acid production acyl‐ACP Bacteria Continuous production Coordination Coupling Deactivation Depletion fatty acid kinase Fatty acid synthase II Fatty acids Fatty-acid synthase Feedback Gram‐positive bacteria Inactivation Inhibitors membrane biogenesis regulation Phosphatidic acid Phospholipids PlsX Synthesis Thioesterase |
title | Revisiting the coupling of fatty acid to phospholipid synthesis in bacteria with FapR regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revisiting%20the%20coupling%20of%20fatty%20acid%20to%20phospholipid%20synthesis%20in%20bacteria%20with%20FapR%20regulation&rft.jtitle=Molecular%20microbiology&rft.au=Machinandiarena,%20Federico&rft.date=2020-10&rft.volume=114&rft.issue=4&rft.spage=653&rft.epage=663&rft.pages=653-663&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14574&rft_dat=%3Cproquest_cross%3E2454081841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454081841&rft_id=info:pmid/32671874&rfr_iscdi=true |