MOF Derived Nonstoichiometric NixCo3−xO4−y Nanocage for Superior Electrocatalytic Oxygen Evolution

Nonstoichiometric NixCo3−xO4−y 3D nanocages are fabricated through metal–organic framework template route and their electrocatalytic oxygen evolution reaction (OER) characteristics have been investigated. Substitution of Ni in Co3O4 spinel structure improves the intrinsic catalytic activity. Enhance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2016-10, Vol.3 (20), p.n/a
Hauptverfasser: Antony, Rajini P., Satpati, Ashis K., Bhattacharyya, Kaustava, Jagatap, Bhagawantrao N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Advanced materials interfaces
container_volume 3
creator Antony, Rajini P.
Satpati, Ashis K.
Bhattacharyya, Kaustava
Jagatap, Bhagawantrao N.
description Nonstoichiometric NixCo3−xO4−y 3D nanocages are fabricated through metal–organic framework template route and their electrocatalytic oxygen evolution reaction (OER) characteristics have been investigated. Substitution of Ni in Co3O4 spinel structure improves the intrinsic catalytic activity. Enhanced OER activity stems from the presence of nonstoichiometry and low coordination metal sites, which lower the OH− adsorption energy and improve the conductivity of the catalysts. OER activity is tuned by varying Ni to Co ratio and the best activity is observed for NiCo‐1, having Ni/Co = 1. This is reflected in a lower overpotential (η) of 320 mV at a current density of 10 mA cm−2 and a lowest Tafel slope of 53 mV dec−1. The turnover frequency value (1.37 × 10−2 s−1) and lower apparent activation energy (35.5 ± 3 kJ mol−1) at η = 350 mV further support the superior intrinsic activity of NiCo‐1. The synergetic effect of porosity, nonstoichiometry, and rich redox centers results in enhancement of the OER activity of NixCo3−xO4−y 3D nanocage. Present work provides a simple strategy to design a low‐cost and efficient electrocatalyst which can be combined with photoelectrode to realize superior solar to hydrogen conversion devices. The nonhomogeneous surface charge distribution and high electrochemical surface area of nonstoichiometric NixCo3–xO4–y three dimensional nanocages results in improved electrocatalytic oxygen evolution activity compared to Co3O4. This is due to the synergetic effect of porosity, nonstoichiometry and rich redox centers in NixCo3−xO4−y The efficient catalytic activity for NixCo3−xO4−y is supported by higher turnover frequency and lower apparent activation energy.
doi_str_mv 10.1002/admi.201600632
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2454045623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4219300461</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2662-bfe15a79a801a61c3a673216776d6b572235e385e7e013ed8403a10790d1cd2b3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhiMEElXhyjkS55QZO7aTI-pGpS4SizhabuIWQxoXJy3NG3DmEXkSXBVVnLjMovm_Gc0fBFcIHQQgNypfmQ4B5ACckpOgRTDlkaAMTv_U58FlVb0CACJBktBWsJjMBmFPO7PVeTi1ZVVbk70Yu9K1M1k4Nbuupd-fX7tZ7GMTTlVpM7XU4cK68GGz9qQv-oXOaucHtSqa2nOzXbPUZdjf2mJTG1teBGcLVVT68je3g6dB_7F7F41nw1H3dhwtCeckmi80MiVSlQAqjhlVXFCCXAie8zkThFCmacK00IBU50kMVCGIFHLMcjKn7eD6sHft7PtGV7V8tRtX-pOSxCyGmHFC_1NhQgFYnKaJV6UH1YcpdCPXzqyUaySC3Dsu947Lo-PytjcZHTvPRgfWVLXeHVnl3qT_SDD5PB3K5zHeP7L7iQT6A2qWhnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830054998</pqid></control><display><type>article</type><title>MOF Derived Nonstoichiometric NixCo3−xO4−y Nanocage for Superior Electrocatalytic Oxygen Evolution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Antony, Rajini P. ; Satpati, Ashis K. ; Bhattacharyya, Kaustava ; Jagatap, Bhagawantrao N.</creator><creatorcontrib>Antony, Rajini P. ; Satpati, Ashis K. ; Bhattacharyya, Kaustava ; Jagatap, Bhagawantrao N.</creatorcontrib><description>Nonstoichiometric NixCo3−xO4−y 3D nanocages are fabricated through metal–organic framework template route and their electrocatalytic oxygen evolution reaction (OER) characteristics have been investigated. Substitution of Ni in Co3O4 spinel structure improves the intrinsic catalytic activity. Enhanced OER activity stems from the presence of nonstoichiometry and low coordination metal sites, which lower the OH− adsorption energy and improve the conductivity of the catalysts. OER activity is tuned by varying Ni to Co ratio and the best activity is observed for NiCo‐1, having Ni/Co = 1. This is reflected in a lower overpotential (η) of 320 mV at a current density of 10 mA cm−2 and a lowest Tafel slope of 53 mV dec−1. The turnover frequency value (1.37 × 10−2 s−1) and lower apparent activation energy (35.5 ± 3 kJ mol−1) at η = 350 mV further support the superior intrinsic activity of NiCo‐1. The synergetic effect of porosity, nonstoichiometry, and rich redox centers results in enhancement of the OER activity of NixCo3−xO4−y 3D nanocage. Present work provides a simple strategy to design a low‐cost and efficient electrocatalyst which can be combined with photoelectrode to realize superior solar to hydrogen conversion devices. The nonhomogeneous surface charge distribution and high electrochemical surface area of nonstoichiometric NixCo3–xO4–y three dimensional nanocages results in improved electrocatalytic oxygen evolution activity compared to Co3O4. This is due to the synergetic effect of porosity, nonstoichiometry and rich redox centers in NixCo3−xO4−y The efficient catalytic activity for NixCo3−xO4−y is supported by higher turnover frequency and lower apparent activation energy.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201600632</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Catalytic activity ; Cobalt oxides ; electrocatalysis ; Electrocatalysts ; Intermetallic compounds ; metal-organic frame work ; Metal-organic frameworks ; nickel cobalt oxides ; Oxygen ; Oxygen evolution reactions ; Porosity ; solar water splitting ; Substitution reactions ; water oxidation</subject><ispartof>Advanced materials interfaces, 2016-10, Vol.3 (20), p.n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201600632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201600632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Antony, Rajini P.</creatorcontrib><creatorcontrib>Satpati, Ashis K.</creatorcontrib><creatorcontrib>Bhattacharyya, Kaustava</creatorcontrib><creatorcontrib>Jagatap, Bhagawantrao N.</creatorcontrib><title>MOF Derived Nonstoichiometric NixCo3−xO4−y Nanocage for Superior Electrocatalytic Oxygen Evolution</title><title>Advanced materials interfaces</title><addtitle>Adv. Mater. Interfaces</addtitle><description>Nonstoichiometric NixCo3−xO4−y 3D nanocages are fabricated through metal–organic framework template route and their electrocatalytic oxygen evolution reaction (OER) characteristics have been investigated. Substitution of Ni in Co3O4 spinel structure improves the intrinsic catalytic activity. Enhanced OER activity stems from the presence of nonstoichiometry and low coordination metal sites, which lower the OH− adsorption energy and improve the conductivity of the catalysts. OER activity is tuned by varying Ni to Co ratio and the best activity is observed for NiCo‐1, having Ni/Co = 1. This is reflected in a lower overpotential (η) of 320 mV at a current density of 10 mA cm−2 and a lowest Tafel slope of 53 mV dec−1. The turnover frequency value (1.37 × 10−2 s−1) and lower apparent activation energy (35.5 ± 3 kJ mol−1) at η = 350 mV further support the superior intrinsic activity of NiCo‐1. The synergetic effect of porosity, nonstoichiometry, and rich redox centers results in enhancement of the OER activity of NixCo3−xO4−y 3D nanocage. Present work provides a simple strategy to design a low‐cost and efficient electrocatalyst which can be combined with photoelectrode to realize superior solar to hydrogen conversion devices. The nonhomogeneous surface charge distribution and high electrochemical surface area of nonstoichiometric NixCo3–xO4–y three dimensional nanocages results in improved electrocatalytic oxygen evolution activity compared to Co3O4. This is due to the synergetic effect of porosity, nonstoichiometry and rich redox centers in NixCo3−xO4−y The efficient catalytic activity for NixCo3−xO4−y is supported by higher turnover frequency and lower apparent activation energy.</description><subject>Catalytic activity</subject><subject>Cobalt oxides</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Intermetallic compounds</subject><subject>metal-organic frame work</subject><subject>Metal-organic frameworks</subject><subject>nickel cobalt oxides</subject><subject>Oxygen</subject><subject>Oxygen evolution reactions</subject><subject>Porosity</subject><subject>solar water splitting</subject><subject>Substitution reactions</subject><subject>water oxidation</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhiMEElXhyjkS55QZO7aTI-pGpS4SizhabuIWQxoXJy3NG3DmEXkSXBVVnLjMovm_Gc0fBFcIHQQgNypfmQ4B5ACckpOgRTDlkaAMTv_U58FlVb0CACJBktBWsJjMBmFPO7PVeTi1ZVVbk70Yu9K1M1k4Nbuupd-fX7tZ7GMTTlVpM7XU4cK68GGz9qQv-oXOaucHtSqa2nOzXbPUZdjf2mJTG1teBGcLVVT68je3g6dB_7F7F41nw1H3dhwtCeckmi80MiVSlQAqjhlVXFCCXAie8zkThFCmacK00IBU50kMVCGIFHLMcjKn7eD6sHft7PtGV7V8tRtX-pOSxCyGmHFC_1NhQgFYnKaJV6UH1YcpdCPXzqyUaySC3Dsu947Lo-PytjcZHTvPRgfWVLXeHVnl3qT_SDD5PB3K5zHeP7L7iQT6A2qWhnY</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Antony, Rajini P.</creator><creator>Satpati, Ashis K.</creator><creator>Bhattacharyya, Kaustava</creator><creator>Jagatap, Bhagawantrao N.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161001</creationdate><title>MOF Derived Nonstoichiometric NixCo3−xO4−y Nanocage for Superior Electrocatalytic Oxygen Evolution</title><author>Antony, Rajini P. ; Satpati, Ashis K. ; Bhattacharyya, Kaustava ; Jagatap, Bhagawantrao N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2662-bfe15a79a801a61c3a673216776d6b572235e385e7e013ed8403a10790d1cd2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catalytic activity</topic><topic>Cobalt oxides</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Intermetallic compounds</topic><topic>metal-organic frame work</topic><topic>Metal-organic frameworks</topic><topic>nickel cobalt oxides</topic><topic>Oxygen</topic><topic>Oxygen evolution reactions</topic><topic>Porosity</topic><topic>solar water splitting</topic><topic>Substitution reactions</topic><topic>water oxidation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antony, Rajini P.</creatorcontrib><creatorcontrib>Satpati, Ashis K.</creatorcontrib><creatorcontrib>Bhattacharyya, Kaustava</creatorcontrib><creatorcontrib>Jagatap, Bhagawantrao N.</creatorcontrib><collection>Istex</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antony, Rajini P.</au><au>Satpati, Ashis K.</au><au>Bhattacharyya, Kaustava</au><au>Jagatap, Bhagawantrao N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF Derived Nonstoichiometric NixCo3−xO4−y Nanocage for Superior Electrocatalytic Oxygen Evolution</atitle><jtitle>Advanced materials interfaces</jtitle><addtitle>Adv. Mater. Interfaces</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>3</volume><issue>20</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Nonstoichiometric NixCo3−xO4−y 3D nanocages are fabricated through metal–organic framework template route and their electrocatalytic oxygen evolution reaction (OER) characteristics have been investigated. Substitution of Ni in Co3O4 spinel structure improves the intrinsic catalytic activity. Enhanced OER activity stems from the presence of nonstoichiometry and low coordination metal sites, which lower the OH− adsorption energy and improve the conductivity of the catalysts. OER activity is tuned by varying Ni to Co ratio and the best activity is observed for NiCo‐1, having Ni/Co = 1. This is reflected in a lower overpotential (η) of 320 mV at a current density of 10 mA cm−2 and a lowest Tafel slope of 53 mV dec−1. The turnover frequency value (1.37 × 10−2 s−1) and lower apparent activation energy (35.5 ± 3 kJ mol−1) at η = 350 mV further support the superior intrinsic activity of NiCo‐1. The synergetic effect of porosity, nonstoichiometry, and rich redox centers results in enhancement of the OER activity of NixCo3−xO4−y 3D nanocage. Present work provides a simple strategy to design a low‐cost and efficient electrocatalyst which can be combined with photoelectrode to realize superior solar to hydrogen conversion devices. The nonhomogeneous surface charge distribution and high electrochemical surface area of nonstoichiometric NixCo3–xO4–y three dimensional nanocages results in improved electrocatalytic oxygen evolution activity compared to Co3O4. This is due to the synergetic effect of porosity, nonstoichiometry and rich redox centers in NixCo3−xO4−y The efficient catalytic activity for NixCo3−xO4−y is supported by higher turnover frequency and lower apparent activation energy.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/admi.201600632</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2016-10, Vol.3 (20), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2454045623
source Wiley Online Library Journals Frontfile Complete
subjects Catalytic activity
Cobalt oxides
electrocatalysis
Electrocatalysts
Intermetallic compounds
metal-organic frame work
Metal-organic frameworks
nickel cobalt oxides
Oxygen
Oxygen evolution reactions
Porosity
solar water splitting
Substitution reactions
water oxidation
title MOF Derived Nonstoichiometric NixCo3−xO4−y Nanocage for Superior Electrocatalytic Oxygen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF%20Derived%20Nonstoichiometric%20NixCo3%E2%88%92xO4%E2%88%92y%20Nanocage%20for%20Superior%20Electrocatalytic%20Oxygen%20Evolution&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Antony,%20Rajini%20P.&rft.date=2016-10-01&rft.volume=3&rft.issue=20&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201600632&rft_dat=%3Cproquest_wiley%3E4219300461%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830054998&rft_id=info:pmid/&rfr_iscdi=true