Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer

[Display omitted] •Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se). One of the major...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-09, Vol.208, p.884-893
Hauptverfasser: Yousefi, Mahsa, Minbashi, Mehran, Monfared, Zahra, Memarian, Nafiseh, Hajjiah, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue
container_start_page 884
container_title Solar energy
container_volume 208
creator Yousefi, Mahsa
Minbashi, Mehran
Monfared, Zahra
Memarian, Nafiseh
Hajjiah, Ali
description [Display omitted] •Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se). One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.
doi_str_mv 10.1016/j.solener.2020.08.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453913714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20308884</els_id><sourcerecordid>2453913714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguXWStE17Eln8WFjwsCuIl9Am0zWl265JV-i_N_vh2dMMM_O-w_sQcssgZsCy-yb2fYsdupgDhxjyGJLijExYIlnEeCrPyQRA5BEU_OOSXHnfADDJcjkh6_lm6_of263p8IUU69pqi50eaV_T2edquUQa3EtHNbatp9VIsVvbDtH9adpyGKxGarBGPXhqu8O4rHzvKnRhP6K7Jhd12Xq8OdUpeX9-Ws1eo8Xby3z2uIi0EHKIUAqe80QKkzI0ZWhTbowGjVnOtSwKkwqTsExwA-Efr8oy5SITEiSrqyQTU3J39A2pvnfoB9X0O9eFlyp4iYIJyZJwlR6vtOu9d1irrbOb0o2KgdozVY06MVV7pgpyFZgG3cNRhyHCjw1bf6CFxrqQXZne_uPwC0x7gts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453913714</pqid></control><display><type>article</type><title>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yousefi, Mahsa ; Minbashi, Mehran ; Monfared, Zahra ; Memarian, Nafiseh ; Hajjiah, Ali</creator><creatorcontrib>Yousefi, Mahsa ; Minbashi, Mehran ; Monfared, Zahra ; Memarian, Nafiseh ; Hajjiah, Ali</creatorcontrib><description>[Display omitted] •Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se). One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.08.049</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorbers ; Crystal defects ; CZTSSe ; Efficiency ; Energy gap ; Energy levels ; Finite difference method ; Finite element method ; Finite Element Method (FEM) ; Lattice defects ; Mathematical models ; Maximum efficiency ; Photovoltaic cells ; Solar cell ; Solar cells ; Solar energy ; Thin films</subject><ispartof>Solar energy, 2020-09, Vol.208, p.884-893</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</citedby><cites>FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</cites><orcidid>0000-0002-7585-1876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.08.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yousefi, Mahsa</creatorcontrib><creatorcontrib>Minbashi, Mehran</creatorcontrib><creatorcontrib>Monfared, Zahra</creatorcontrib><creatorcontrib>Memarian, Nafiseh</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><title>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</title><title>Solar energy</title><description>[Display omitted] •Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se). One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.</description><subject>Absorbers</subject><subject>Crystal defects</subject><subject>CZTSSe</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Finite Element Method (FEM)</subject><subject>Lattice defects</subject><subject>Mathematical models</subject><subject>Maximum efficiency</subject><subject>Photovoltaic cells</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Thin films</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguXWStE17Eln8WFjwsCuIl9Am0zWl265JV-i_N_vh2dMMM_O-w_sQcssgZsCy-yb2fYsdupgDhxjyGJLijExYIlnEeCrPyQRA5BEU_OOSXHnfADDJcjkh6_lm6_of263p8IUU69pqi50eaV_T2edquUQa3EtHNbatp9VIsVvbDtH9adpyGKxGarBGPXhqu8O4rHzvKnRhP6K7Jhd12Xq8OdUpeX9-Ws1eo8Xby3z2uIi0EHKIUAqe80QKkzI0ZWhTbowGjVnOtSwKkwqTsExwA-Efr8oy5SITEiSrqyQTU3J39A2pvnfoB9X0O9eFlyp4iYIJyZJwlR6vtOu9d1irrbOb0o2KgdozVY06MVV7pgpyFZgG3cNRhyHCjw1bf6CFxrqQXZne_uPwC0x7gts</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Yousefi, Mahsa</creator><creator>Minbashi, Mehran</creator><creator>Monfared, Zahra</creator><creator>Memarian, Nafiseh</creator><creator>Hajjiah, Ali</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7585-1876</orcidid></search><sort><creationdate>20200915</creationdate><title>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</title><author>Yousefi, Mahsa ; Minbashi, Mehran ; Monfared, Zahra ; Memarian, Nafiseh ; Hajjiah, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Crystal defects</topic><topic>CZTSSe</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Finite Element Method (FEM)</topic><topic>Lattice defects</topic><topic>Mathematical models</topic><topic>Maximum efficiency</topic><topic>Photovoltaic cells</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi, Mahsa</creatorcontrib><creatorcontrib>Minbashi, Mehran</creatorcontrib><creatorcontrib>Monfared, Zahra</creatorcontrib><creatorcontrib>Memarian, Nafiseh</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousefi, Mahsa</au><au>Minbashi, Mehran</au><au>Monfared, Zahra</au><au>Memarian, Nafiseh</au><au>Hajjiah, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</atitle><jtitle>Solar energy</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>208</volume><spage>884</spage><epage>893</epage><pages>884-893</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>[Display omitted] •Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se). One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.08.049</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7585-1876</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2020-09, Vol.208, p.884-893
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2453913714
source ScienceDirect Journals (5 years ago - present)
subjects Absorbers
Crystal defects
CZTSSe
Efficiency
Energy gap
Energy levels
Finite difference method
Finite element method
Finite Element Method (FEM)
Lattice defects
Mathematical models
Maximum efficiency
Photovoltaic cells
Solar cell
Solar cells
Solar energy
Thin films
title Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20efficiency%20of%20CZTSSe%20solar%20cells%20by%20engineering%20the%20lattice%20defects%20in%20the%20absorber%20layer&rft.jtitle=Solar%20energy&rft.au=Yousefi,%20Mahsa&rft.date=2020-09-15&rft.volume=208&rft.spage=884&rft.epage=893&rft.pages=884-893&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.08.049&rft_dat=%3Cproquest_cross%3E2453913714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453913714&rft_id=info:pmid/&rft_els_id=S0038092X20308884&rfr_iscdi=true