Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer
[Display omitted] •Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se). One of the major...
Gespeichert in:
Veröffentlicht in: | Solar energy 2020-09, Vol.208, p.884-893 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 893 |
---|---|
container_issue | |
container_start_page | 884 |
container_title | Solar energy |
container_volume | 208 |
creator | Yousefi, Mahsa Minbashi, Mehran Monfared, Zahra Memarian, Nafiseh Hajjiah, Ali |
description | [Display omitted]
•Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se).
One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved. |
doi_str_mv | 10.1016/j.solener.2020.08.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453913714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20308884</els_id><sourcerecordid>2453913714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguXWStE17Eln8WFjwsCuIl9Am0zWl265JV-i_N_vh2dMMM_O-w_sQcssgZsCy-yb2fYsdupgDhxjyGJLijExYIlnEeCrPyQRA5BEU_OOSXHnfADDJcjkh6_lm6_of263p8IUU69pqi50eaV_T2edquUQa3EtHNbatp9VIsVvbDtH9adpyGKxGarBGPXhqu8O4rHzvKnRhP6K7Jhd12Xq8OdUpeX9-Ws1eo8Xby3z2uIi0EHKIUAqe80QKkzI0ZWhTbowGjVnOtSwKkwqTsExwA-Efr8oy5SITEiSrqyQTU3J39A2pvnfoB9X0O9eFlyp4iYIJyZJwlR6vtOu9d1irrbOb0o2KgdozVY06MVV7pgpyFZgG3cNRhyHCjw1bf6CFxrqQXZne_uPwC0x7gts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453913714</pqid></control><display><type>article</type><title>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yousefi, Mahsa ; Minbashi, Mehran ; Monfared, Zahra ; Memarian, Nafiseh ; Hajjiah, Ali</creator><creatorcontrib>Yousefi, Mahsa ; Minbashi, Mehran ; Monfared, Zahra ; Memarian, Nafiseh ; Hajjiah, Ali</creatorcontrib><description>[Display omitted]
•Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se).
One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.08.049</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorbers ; Crystal defects ; CZTSSe ; Efficiency ; Energy gap ; Energy levels ; Finite difference method ; Finite element method ; Finite Element Method (FEM) ; Lattice defects ; Mathematical models ; Maximum efficiency ; Photovoltaic cells ; Solar cell ; Solar cells ; Solar energy ; Thin films</subject><ispartof>Solar energy, 2020-09, Vol.208, p.884-893</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</citedby><cites>FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</cites><orcidid>0000-0002-7585-1876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.08.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yousefi, Mahsa</creatorcontrib><creatorcontrib>Minbashi, Mehran</creatorcontrib><creatorcontrib>Monfared, Zahra</creatorcontrib><creatorcontrib>Memarian, Nafiseh</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><title>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</title><title>Solar energy</title><description>[Display omitted]
•Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se).
One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.</description><subject>Absorbers</subject><subject>Crystal defects</subject><subject>CZTSSe</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Energy levels</subject><subject>Finite difference method</subject><subject>Finite element method</subject><subject>Finite Element Method (FEM)</subject><subject>Lattice defects</subject><subject>Mathematical models</subject><subject>Maximum efficiency</subject><subject>Photovoltaic cells</subject><subject>Solar cell</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Thin films</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguXWStE17Eln8WFjwsCuIl9Am0zWl265JV-i_N_vh2dMMM_O-w_sQcssgZsCy-yb2fYsdupgDhxjyGJLijExYIlnEeCrPyQRA5BEU_OOSXHnfADDJcjkh6_lm6_of263p8IUU69pqi50eaV_T2edquUQa3EtHNbatp9VIsVvbDtH9adpyGKxGarBGPXhqu8O4rHzvKnRhP6K7Jhd12Xq8OdUpeX9-Ws1eo8Xby3z2uIi0EHKIUAqe80QKkzI0ZWhTbowGjVnOtSwKkwqTsExwA-Efr8oy5SITEiSrqyQTU3J39A2pvnfoB9X0O9eFlyp4iYIJyZJwlR6vtOu9d1irrbOb0o2KgdozVY06MVV7pgpyFZgG3cNRhyHCjw1bf6CFxrqQXZne_uPwC0x7gts</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Yousefi, Mahsa</creator><creator>Minbashi, Mehran</creator><creator>Monfared, Zahra</creator><creator>Memarian, Nafiseh</creator><creator>Hajjiah, Ali</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7585-1876</orcidid></search><sort><creationdate>20200915</creationdate><title>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</title><author>Yousefi, Mahsa ; Minbashi, Mehran ; Monfared, Zahra ; Memarian, Nafiseh ; Hajjiah, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e73282473d51eda82452ddc0ce682c799d53d41632d0def2baa523637071fb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorbers</topic><topic>Crystal defects</topic><topic>CZTSSe</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Energy levels</topic><topic>Finite difference method</topic><topic>Finite element method</topic><topic>Finite Element Method (FEM)</topic><topic>Lattice defects</topic><topic>Mathematical models</topic><topic>Maximum efficiency</topic><topic>Photovoltaic cells</topic><topic>Solar cell</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi, Mahsa</creatorcontrib><creatorcontrib>Minbashi, Mehran</creatorcontrib><creatorcontrib>Monfared, Zahra</creatorcontrib><creatorcontrib>Memarian, Nafiseh</creatorcontrib><creatorcontrib>Hajjiah, Ali</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousefi, Mahsa</au><au>Minbashi, Mehran</au><au>Monfared, Zahra</au><au>Memarian, Nafiseh</au><au>Hajjiah, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer</atitle><jtitle>Solar energy</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>208</volume><spage>884</spage><epage>893</epage><pages>884-893</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>[Display omitted]
•Production of champion CZTSSe thin film solar cells with high efficiency near the world's record.•Investigation of possible defects in CZT(S,Se) Solar Cell.•Finding the key level related to the position of harmful defects from the valence band of CZT(S, Se).
One of the major challenges in increasing the efficiency of the CZTSSe solar cells is to control the lattice defects formation and secondary phases in the absorber layer of the cells. Moreover, by controlling and decreasing lattice defects and thus improving the efficiency, larger-scale applications would be financially acceptable. In this paper, several CZTSSe thin-film solar cells have been prepared and one device with champion efficiency of 10.33% has been chosen for the modeling. Afterward, numerical simulations based on the Finite Element Method (FEM) and Finite Difference (FD) were conducted on these cells. The effect of defects density and defect types, which are located at different energy levels in the absorber layer bandgap, was evaluated. The results indicated that by decreasing the defects which are located close to the electron Fermi level and the middle of the band gap (Eg/2), the maximum efficiency of 18.47% for these solar cells can be achieved.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.08.049</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7585-1876</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2020-09, Vol.208, p.884-893 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_2453913714 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Absorbers Crystal defects CZTSSe Efficiency Energy gap Energy levels Finite difference method Finite element method Finite Element Method (FEM) Lattice defects Mathematical models Maximum efficiency Photovoltaic cells Solar cell Solar cells Solar energy Thin films |
title | Improving the efficiency of CZTSSe solar cells by engineering the lattice defects in the absorber layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20efficiency%20of%20CZTSSe%20solar%20cells%20by%20engineering%20the%20lattice%20defects%20in%20the%20absorber%20layer&rft.jtitle=Solar%20energy&rft.au=Yousefi,%20Mahsa&rft.date=2020-09-15&rft.volume=208&rft.spage=884&rft.epage=893&rft.pages=884-893&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.08.049&rft_dat=%3Cproquest_cross%3E2453913714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453913714&rft_id=info:pmid/&rft_els_id=S0038092X20308884&rfr_iscdi=true |