LID 2020: The Learning from Imperfect Data Challenge Results

Learning from imperfect data becomes an issue in many industrial applications after the research community has made profound progress in supervised learning from perfectly annotated datasets. The purpose of the Learning from Imperfect Data (LID) workshop is to inspire and facilitate the research in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Wei, Yunchao, Zheng, Shuai, Ming-Ming, Cheng, Zhao, Hang, Wang, Liwei, Ding, Errui, Yang, Yi, Torralba, Antonio, Liu, Ting, Sun, Guolei, Wang, Wenguan, Luc Van Gool, Bae, Wonho, Noh, Junhyug, Seo, Jinhwan, Kim, Gunhee, Zhao, Hao, Lu, Ming, Yao, Anbang, Guo, Yiwen, Chen, Yurong, Zhang, Li, Tan, Chuangchuang, Ruan, Tao, Gu, Guanghua, Wei, Shikui, Zhao, Yao, Dobko, Mariia, Viniavskyi, Ostap, Oles Dobosevych, Wang, Zhendong, Chen, Zhenyuan, Chen, Gong, Yan, Huanqing, He, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!