Radar detection rate comparison through a mobile robot platform at the ZalaZONE proving ground
Since an automotive driving vehicle is controlled by Advanced Driver-Assistance Systems (ADAS) / Automated Driving (AD) functions, the selected sensors for the perception process become a key component of the system. Therefore, the necessity of ensuring precise data is crucial. But the correctness o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Exposito Jimenez, Victor J Schwarzl, Christian Josvai, Szilard |
description | Since an automotive driving vehicle is controlled by Advanced Driver-Assistance Systems (ADAS) / Automated Driving (AD) functions, the selected sensors for the perception process become a key component of the system. Therefore, the necessity of ensuring precise data is crucial. But the correctness of the data is not the only part that has to be ensured, the limitations of the different technologies to accurately sense the reality must be checked for an error-free decision making according to the current scenario. In this context, this publication presents a comparison between two different automotive radars through our self-developed robot mobile platform called SPIDER, and how they can detect different kinds of objects in the tests carried out at the ZalaZONE proving ground. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2453834872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453834872</sourcerecordid><originalsourceid>FETCH-proquest_journals_24538348723</originalsourceid><addsrcrecordid>eNqNy80KwjAQBOAgCBbtOyx4LtSktb1LxZOCeOpB2bbpH2m2JqnPbw4-gKdhmG9WLOBCHKI84XzDQmvHOI75MeNpKgL2vGODBhrpZO0G0mDQSahpmtEM1nfXG1q6HhAmqgYlwVBFDmaFriUzATpPJJSosLxdC5gNfQbdQedvutmxdYvKyvCXW7Y_F4_TJfLsvUjrXiMtRvvpxZNU5CLJMy7-U19rQERC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453834872</pqid></control><display><type>article</type><title>Radar detection rate comparison through a mobile robot platform at the ZalaZONE proving ground</title><source>Free E- Journals</source><creator>Exposito Jimenez, Victor J ; Schwarzl, Christian ; Josvai, Szilard</creator><creatorcontrib>Exposito Jimenez, Victor J ; Schwarzl, Christian ; Josvai, Szilard</creatorcontrib><description>Since an automotive driving vehicle is controlled by Advanced Driver-Assistance Systems (ADAS) / Automated Driving (AD) functions, the selected sensors for the perception process become a key component of the system. Therefore, the necessity of ensuring precise data is crucial. But the correctness of the data is not the only part that has to be ensured, the limitations of the different technologies to accurately sense the reality must be checked for an error-free decision making according to the current scenario. In this context, this publication presents a comparison between two different automotive radars through our self-developed robot mobile platform called SPIDER, and how they can detect different kinds of objects in the tests carried out at the ZalaZONE proving ground.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Advanced driver assistance systems ; Automatic control ; Automotive radar ; Decision making ; Drivers ; Object recognition ; Radar detection ; Robots</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Exposito Jimenez, Victor J</creatorcontrib><creatorcontrib>Schwarzl, Christian</creatorcontrib><creatorcontrib>Josvai, Szilard</creatorcontrib><title>Radar detection rate comparison through a mobile robot platform at the ZalaZONE proving ground</title><title>arXiv.org</title><description>Since an automotive driving vehicle is controlled by Advanced Driver-Assistance Systems (ADAS) / Automated Driving (AD) functions, the selected sensors for the perception process become a key component of the system. Therefore, the necessity of ensuring precise data is crucial. But the correctness of the data is not the only part that has to be ensured, the limitations of the different technologies to accurately sense the reality must be checked for an error-free decision making according to the current scenario. In this context, this publication presents a comparison between two different automotive radars through our self-developed robot mobile platform called SPIDER, and how they can detect different kinds of objects in the tests carried out at the ZalaZONE proving ground.</description><subject>Advanced driver assistance systems</subject><subject>Automatic control</subject><subject>Automotive radar</subject><subject>Decision making</subject><subject>Drivers</subject><subject>Object recognition</subject><subject>Radar detection</subject><subject>Robots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy80KwjAQBOAgCBbtOyx4LtSktb1LxZOCeOpB2bbpH2m2JqnPbw4-gKdhmG9WLOBCHKI84XzDQmvHOI75MeNpKgL2vGODBhrpZO0G0mDQSahpmtEM1nfXG1q6HhAmqgYlwVBFDmaFriUzATpPJJSosLxdC5gNfQbdQedvutmxdYvKyvCXW7Y_F4_TJfLsvUjrXiMtRvvpxZNU5CLJMy7-U19rQERC</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>Exposito Jimenez, Victor J</creator><creator>Schwarzl, Christian</creator><creator>Josvai, Szilard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201022</creationdate><title>Radar detection rate comparison through a mobile robot platform at the ZalaZONE proving ground</title><author>Exposito Jimenez, Victor J ; Schwarzl, Christian ; Josvai, Szilard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24538348723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced driver assistance systems</topic><topic>Automatic control</topic><topic>Automotive radar</topic><topic>Decision making</topic><topic>Drivers</topic><topic>Object recognition</topic><topic>Radar detection</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Exposito Jimenez, Victor J</creatorcontrib><creatorcontrib>Schwarzl, Christian</creatorcontrib><creatorcontrib>Josvai, Szilard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Exposito Jimenez, Victor J</au><au>Schwarzl, Christian</au><au>Josvai, Szilard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Radar detection rate comparison through a mobile robot platform at the ZalaZONE proving ground</atitle><jtitle>arXiv.org</jtitle><date>2020-10-22</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Since an automotive driving vehicle is controlled by Advanced Driver-Assistance Systems (ADAS) / Automated Driving (AD) functions, the selected sensors for the perception process become a key component of the system. Therefore, the necessity of ensuring precise data is crucial. But the correctness of the data is not the only part that has to be ensured, the limitations of the different technologies to accurately sense the reality must be checked for an error-free decision making according to the current scenario. In this context, this publication presents a comparison between two different automotive radars through our self-developed robot mobile platform called SPIDER, and how they can detect different kinds of objects in the tests carried out at the ZalaZONE proving ground.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2453834872 |
source | Free E- Journals |
subjects | Advanced driver assistance systems Automatic control Automotive radar Decision making Drivers Object recognition Radar detection Robots |
title | Radar detection rate comparison through a mobile robot platform at the ZalaZONE proving ground |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Radar%20detection%20rate%20comparison%20through%20a%20mobile%20robot%20platform%20at%20the%20ZalaZONE%20proving%20ground&rft.jtitle=arXiv.org&rft.au=Exposito%20Jimenez,%20Victor%20J&rft.date=2020-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2453834872%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453834872&rft_id=info:pmid/&rfr_iscdi=true |