Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths

A novel boundary element formulation for solving problems involving eddy currents in the thin skin depth approximation is developed. It is assumed that the time-harmonic magnetic field outside the scatterers can be described using the quasistatic approximation. A two-term asymptotic expansion with r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2020-11, Vol.56 (11), p.1-12
Hauptverfasser: Gumerov, Nail A., Adelman, Ross N., Duraiswami, Ramani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 11
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 56
creator Gumerov, Nail A.
Adelman, Ross N.
Duraiswami, Ramani
description A novel boundary element formulation for solving problems involving eddy currents in the thin skin depth approximation is developed. It is assumed that the time-harmonic magnetic field outside the scatterers can be described using the quasistatic approximation. A two-term asymptotic expansion with respect to a small parameter characterizing the skin depth is derived for the magnetic and electric fields outside and inside the scatterer, which can be extended to higher order terms if needed. The introduction of a special surface operator (the inverse surface gradient) allows the reduction of the computational complexity of the solution. A method to compute this operator is developed. The obtained formulation operates only with scalar quantities and requires the computation of surface integral operators that are customary in boundary element (method of moments) solutions to the Laplace equation. The formulation can be accelerated using the fast multipole method. The resulting method is much faster than solving the vector Maxwell equations. The obtained solutions are compared with the Mie solution for scattering from a sphere, and the error of the solution is studied. Computations for much more complex shapes of different topologies, including for magnetic and electric field cages used in testing, are also performed and discussed.
doi_str_mv 10.1109/TMAG.2020.3019634
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2453817314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9178327</ieee_id><sourcerecordid>2453817314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-aa4eb771bace718a5834b8513abfec46aab7685ec51c3c7182d271aca43b00b03</originalsourceid><addsrcrecordid>eNo9kEtPAjEQgBujiYj-AOOliefFzrb7OiICmuAjAc-bbndWFqHFtqvx39sNxMtMZvLNIx8h18BGAKy4Wz2P56OYxWzEGRQpFydkAIWAiLG0OCUDxiCPCpGKc3Lh3CaUIgE2IN_3ptO1tL90usUdak-XZtv51mhqmr6nvDU7-aHRt4rOWtzWjjbG0hejoze0TQDoxOi6U95YR6WnC_NDZxa_OtSqxdDSNV2tW02XnyE84N6v3SU5a-TW4dUxD8n7bLqaPEaL1_nTZLyIVFxwH0kpsMoyqKTCDHKZ5FxUeQJcVuGwSKWssjRPUCWguApEXMcZSCUFrxirGB-S28PevTXhIefLjemsDifLWCQ8h4yDCBQcKGWNcxabcm_bXZBSAit7vWWvt-z1lke9YebmMNMi4j9fQJbzOON_rMl3hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817314</pqid></control><display><type>article</type><title>Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths</title><source>IEEE Electronic Library (IEL)</source><creator>Gumerov, Nail A. ; Adelman, Ross N. ; Duraiswami, Ramani</creator><creatorcontrib>Gumerov, Nail A. ; Adelman, Ross N. ; Duraiswami, Ramani</creatorcontrib><description>A novel boundary element formulation for solving problems involving eddy currents in the thin skin depth approximation is developed. It is assumed that the time-harmonic magnetic field outside the scatterers can be described using the quasistatic approximation. A two-term asymptotic expansion with respect to a small parameter characterizing the skin depth is derived for the magnetic and electric fields outside and inside the scatterer, which can be extended to higher order terms if needed. The introduction of a special surface operator (the inverse surface gradient) allows the reduction of the computational complexity of the solution. A method to compute this operator is developed. The obtained formulation operates only with scalar quantities and requires the computation of surface integral operators that are customary in boundary element (method of moments) solutions to the Laplace equation. The formulation can be accelerated using the fast multipole method. The resulting method is much faster than solving the vector Maxwell equations. The obtained solutions are compared with the Mie solution for scattering from a sphere, and the error of the solution is studied. Computations for much more complex shapes of different topologies, including for magnetic and electric field cages used in testing, are also performed and discussed.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2020.3019634</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic series ; Boundary element method ; boundary integral equations ; Complexity ; computational electromagnetics ; Conductors ; Eddy currents ; Electric fields ; Electromagnetic fields ; Error analysis ; Integral equations ; Laplace equation ; Laplace equations ; Magnetism ; Magnetostatics ; Maxwell equations ; Maxwell's equations ; Method of moments ; Multipoles ; Operators (mathematics) ; Problem solving ; Skin ; Topology</subject><ispartof>IEEE transactions on magnetics, 2020-11, Vol.56 (11), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-aa4eb771bace718a5834b8513abfec46aab7685ec51c3c7182d271aca43b00b03</citedby><cites>FETCH-LOGICAL-c293t-aa4eb771bace718a5834b8513abfec46aab7685ec51c3c7182d271aca43b00b03</cites><orcidid>0000-0003-4958-2526 ; 0000-0002-6758-0391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9178327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9178327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gumerov, Nail A.</creatorcontrib><creatorcontrib>Adelman, Ross N.</creatorcontrib><creatorcontrib>Duraiswami, Ramani</creatorcontrib><title>Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A novel boundary element formulation for solving problems involving eddy currents in the thin skin depth approximation is developed. It is assumed that the time-harmonic magnetic field outside the scatterers can be described using the quasistatic approximation. A two-term asymptotic expansion with respect to a small parameter characterizing the skin depth is derived for the magnetic and electric fields outside and inside the scatterer, which can be extended to higher order terms if needed. The introduction of a special surface operator (the inverse surface gradient) allows the reduction of the computational complexity of the solution. A method to compute this operator is developed. The obtained formulation operates only with scalar quantities and requires the computation of surface integral operators that are customary in boundary element (method of moments) solutions to the Laplace equation. The formulation can be accelerated using the fast multipole method. The resulting method is much faster than solving the vector Maxwell equations. The obtained solutions are compared with the Mie solution for scattering from a sphere, and the error of the solution is studied. Computations for much more complex shapes of different topologies, including for magnetic and electric field cages used in testing, are also performed and discussed.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic series</subject><subject>Boundary element method</subject><subject>boundary integral equations</subject><subject>Complexity</subject><subject>computational electromagnetics</subject><subject>Conductors</subject><subject>Eddy currents</subject><subject>Electric fields</subject><subject>Electromagnetic fields</subject><subject>Error analysis</subject><subject>Integral equations</subject><subject>Laplace equation</subject><subject>Laplace equations</subject><subject>Magnetism</subject><subject>Magnetostatics</subject><subject>Maxwell equations</subject><subject>Maxwell's equations</subject><subject>Method of moments</subject><subject>Multipoles</subject><subject>Operators (mathematics)</subject><subject>Problem solving</subject><subject>Skin</subject><subject>Topology</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEQgBujiYj-AOOliefFzrb7OiICmuAjAc-bbndWFqHFtqvx39sNxMtMZvLNIx8h18BGAKy4Wz2P56OYxWzEGRQpFydkAIWAiLG0OCUDxiCPCpGKc3Lh3CaUIgE2IN_3ptO1tL90usUdak-XZtv51mhqmr6nvDU7-aHRt4rOWtzWjjbG0hejoze0TQDoxOi6U95YR6WnC_NDZxa_OtSqxdDSNV2tW02XnyE84N6v3SU5a-TW4dUxD8n7bLqaPEaL1_nTZLyIVFxwH0kpsMoyqKTCDHKZ5FxUeQJcVuGwSKWssjRPUCWguApEXMcZSCUFrxirGB-S28PevTXhIefLjemsDifLWCQ8h4yDCBQcKGWNcxabcm_bXZBSAit7vWWvt-z1lke9YebmMNMi4j9fQJbzOON_rMl3hQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Gumerov, Nail A.</creator><creator>Adelman, Ross N.</creator><creator>Duraiswami, Ramani</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4958-2526</orcidid><orcidid>https://orcid.org/0000-0002-6758-0391</orcidid></search><sort><creationdate>20201101</creationdate><title>Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths</title><author>Gumerov, Nail A. ; Adelman, Ross N. ; Duraiswami, Ramani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-aa4eb771bace718a5834b8513abfec46aab7685ec51c3c7182d271aca43b00b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic series</topic><topic>Boundary element method</topic><topic>boundary integral equations</topic><topic>Complexity</topic><topic>computational electromagnetics</topic><topic>Conductors</topic><topic>Eddy currents</topic><topic>Electric fields</topic><topic>Electromagnetic fields</topic><topic>Error analysis</topic><topic>Integral equations</topic><topic>Laplace equation</topic><topic>Laplace equations</topic><topic>Magnetism</topic><topic>Magnetostatics</topic><topic>Maxwell equations</topic><topic>Maxwell's equations</topic><topic>Method of moments</topic><topic>Multipoles</topic><topic>Operators (mathematics)</topic><topic>Problem solving</topic><topic>Skin</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Gumerov, Nail A.</creatorcontrib><creatorcontrib>Adelman, Ross N.</creatorcontrib><creatorcontrib>Duraiswami, Ramani</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gumerov, Nail A.</au><au>Adelman, Ross N.</au><au>Duraiswami, Ramani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>56</volume><issue>11</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A novel boundary element formulation for solving problems involving eddy currents in the thin skin depth approximation is developed. It is assumed that the time-harmonic magnetic field outside the scatterers can be described using the quasistatic approximation. A two-term asymptotic expansion with respect to a small parameter characterizing the skin depth is derived for the magnetic and electric fields outside and inside the scatterer, which can be extended to higher order terms if needed. The introduction of a special surface operator (the inverse surface gradient) allows the reduction of the computational complexity of the solution. A method to compute this operator is developed. The obtained formulation operates only with scalar quantities and requires the computation of surface integral operators that are customary in boundary element (method of moments) solutions to the Laplace equation. The formulation can be accelerated using the fast multipole method. The resulting method is much faster than solving the vector Maxwell equations. The obtained solutions are compared with the Mie solution for scattering from a sphere, and the error of the solution is studied. Computations for much more complex shapes of different topologies, including for magnetic and electric field cages used in testing, are also performed and discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2020.3019634</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4958-2526</orcidid><orcidid>https://orcid.org/0000-0002-6758-0391</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2020-11, Vol.56 (11), p.1-12
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2453817314
source IEEE Electronic Library (IEL)
subjects Approximation
Asymptotic methods
Asymptotic series
Boundary element method
boundary integral equations
Complexity
computational electromagnetics
Conductors
Eddy currents
Electric fields
Electromagnetic fields
Error analysis
Integral equations
Laplace equation
Laplace equations
Magnetism
Magnetostatics
Maxwell equations
Maxwell's equations
Method of moments
Multipoles
Operators (mathematics)
Problem solving
Skin
Topology
title Boundary Element Solution of Electromagnetic Fields for Non-Perfect Conductors at Low Frequencies and Thin Skin Depths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20Element%20Solution%20of%20Electromagnetic%20Fields%20for%20Non-Perfect%20Conductors%20at%20Low%20Frequencies%20and%20Thin%20Skin%20Depths&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Gumerov,%20Nail%20A.&rft.date=2020-11-01&rft.volume=56&rft.issue=11&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2020.3019634&rft_dat=%3Cproquest_RIE%3E2453817314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453817314&rft_id=info:pmid/&rft_ieee_id=9178327&rfr_iscdi=true