Background Filtering and Object Detection With a Stationary LiDAR Using a Layer-Based Method

The connected vehicle environment is significant for the future road network. For constructing the connected vehicle environment, real-time data acquirement is always the prerequisite. Recently, using Light Detection and Ranging (LiDAR)-based roadside infrastructures are becoming a prevalent method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.184426-184436
Hauptverfasser: Song, Yanjie, Zhang, Han, Liu, Yuanqiang, Liu, Jinzhang, Zhang, Hongbo, Song, Xiuguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184436
container_issue
container_start_page 184426
container_title IEEE access
container_volume 8
creator Song, Yanjie
Zhang, Han
Liu, Yuanqiang
Liu, Jinzhang
Zhang, Hongbo
Song, Xiuguang
description The connected vehicle environment is significant for the future road network. For constructing the connected vehicle environment, real-time data acquirement is always the prerequisite. Recently, using Light Detection and Ranging (LiDAR)-based roadside infrastructures are becoming a prevalent method of obtaining real-time traffic data. However, the collected raw data from LiDAR cannot usually be used directly. The steps of data processing, like background filtering and object detection, are necessary. The processed data can then be employed in different applications. This paper proposed a novel layer-based searching method that is established with the help of the point distribution features to distinguish moving objects from the point cloud. It aimed to address the unexpected influence of factors such as congested situations and package loss. The new approach was also evaluated compared with the state-of-the-art methods by applying field data. The results showed that the proposed method is more effective than other methods. This method may be applicable to other types of rotating LiDAR for improving the background filtering performance.
doi_str_mv 10.1109/ACCESS.2020.3029341
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453817309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9216093</ieee_id><doaj_id>oai_doaj_org_article_e62fec85108b481d98527b9af6df4955</doaj_id><sourcerecordid>2453817309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e7383dd3e6cccc2c948d5a4c2a00d3a0db6aca7c1613911b9d044fdb0dd16bae3</originalsourceid><addsrcrecordid>eNpNkU1LAzEQhhdRULS_wEvA89Z87W5yrPUTKoK1eBHCbDJbU2uj2fTgvzd1RZzLfDDvOwNPUZwyOmaM6vPJdHo1n4855XQsKNdCsr3iiLNal6IS9f6_-rAY9f2K5lB5VDVHxcsF2LdlDNuNI9d-nTD6zZJA7h7aFdpELjHl5MOGPPv0SoDME-xaiF9k5i8nj2TR_0jIDL4wlhfQoyP3mF6DOykOOlj3OPrNx8Xi-uppelvOHm7uppNZaSVVqcRGKOGcwNrm4FZL5SqQlgOlTgB1bQ0WGstqJjRjrXZUys611DlWt4DiuLgbfF2AlfmI_j1_ZwJ48zMIcWkgJm_XaLDmHVpVMapaqZjTquJNq6GrXSd1VWWvs8HrI4bPLfbJrMI2bvL7hstKKNYIqvOWGLZsDH0fsfu7yqjZUTEDFbOjYn6pZNXpoPKI-KfQGU-2FN_WQIfX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453817309</pqid></control><display><type>article</type><title>Background Filtering and Object Detection With a Stationary LiDAR Using a Layer-Based Method</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Song, Yanjie ; Zhang, Han ; Liu, Yuanqiang ; Liu, Jinzhang ; Zhang, Hongbo ; Song, Xiuguang</creator><creatorcontrib>Song, Yanjie ; Zhang, Han ; Liu, Yuanqiang ; Liu, Jinzhang ; Zhang, Hongbo ; Song, Xiuguang</creatorcontrib><description>The connected vehicle environment is significant for the future road network. For constructing the connected vehicle environment, real-time data acquirement is always the prerequisite. Recently, using Light Detection and Ranging (LiDAR)-based roadside infrastructures are becoming a prevalent method of obtaining real-time traffic data. However, the collected raw data from LiDAR cannot usually be used directly. The steps of data processing, like background filtering and object detection, are necessary. The processed data can then be employed in different applications. This paper proposed a novel layer-based searching method that is established with the help of the point distribution features to distinguish moving objects from the point cloud. It aimed to address the unexpected influence of factors such as congested situations and package loss. The new approach was also evaluated compared with the state-of-the-art methods by applying field data. The results showed that the proposed method is more effective than other methods. This method may be applicable to other types of rotating LiDAR for improving the background filtering performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3029341</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Background filtering ; Clustering algorithms ; Data processing ; Filtering ; Filtration ; Laser beams ; Laser radar ; layer-based method ; Lidar ; Object detection ; Object recognition ; Packet loss ; Real time ; Road construction ; Roadsides ; stationary LiDAR ; Traffic information ; Transportation networks</subject><ispartof>IEEE access, 2020, Vol.8, p.184426-184436</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e7383dd3e6cccc2c948d5a4c2a00d3a0db6aca7c1613911b9d044fdb0dd16bae3</citedby><cites>FETCH-LOGICAL-c408t-e7383dd3e6cccc2c948d5a4c2a00d3a0db6aca7c1613911b9d044fdb0dd16bae3</cites><orcidid>0000-0003-4610-027X ; 0000-0002-4953-5781 ; 0000-0002-3081-6778 ; 0000-0003-2204-4584 ; 0000-0002-1099-8869 ; 0000-0002-6013-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9216093$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Song, Yanjie</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Liu, Yuanqiang</creatorcontrib><creatorcontrib>Liu, Jinzhang</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Song, Xiuguang</creatorcontrib><title>Background Filtering and Object Detection With a Stationary LiDAR Using a Layer-Based Method</title><title>IEEE access</title><addtitle>Access</addtitle><description>The connected vehicle environment is significant for the future road network. For constructing the connected vehicle environment, real-time data acquirement is always the prerequisite. Recently, using Light Detection and Ranging (LiDAR)-based roadside infrastructures are becoming a prevalent method of obtaining real-time traffic data. However, the collected raw data from LiDAR cannot usually be used directly. The steps of data processing, like background filtering and object detection, are necessary. The processed data can then be employed in different applications. This paper proposed a novel layer-based searching method that is established with the help of the point distribution features to distinguish moving objects from the point cloud. It aimed to address the unexpected influence of factors such as congested situations and package loss. The new approach was also evaluated compared with the state-of-the-art methods by applying field data. The results showed that the proposed method is more effective than other methods. This method may be applicable to other types of rotating LiDAR for improving the background filtering performance.</description><subject>Background filtering</subject><subject>Clustering algorithms</subject><subject>Data processing</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Laser beams</subject><subject>Laser radar</subject><subject>layer-based method</subject><subject>Lidar</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Packet loss</subject><subject>Real time</subject><subject>Road construction</subject><subject>Roadsides</subject><subject>stationary LiDAR</subject><subject>Traffic information</subject><subject>Transportation networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1LAzEQhhdRULS_wEvA89Z87W5yrPUTKoK1eBHCbDJbU2uj2fTgvzd1RZzLfDDvOwNPUZwyOmaM6vPJdHo1n4855XQsKNdCsr3iiLNal6IS9f6_-rAY9f2K5lB5VDVHxcsF2LdlDNuNI9d-nTD6zZJA7h7aFdpELjHl5MOGPPv0SoDME-xaiF9k5i8nj2TR_0jIDL4wlhfQoyP3mF6DOykOOlj3OPrNx8Xi-uppelvOHm7uppNZaSVVqcRGKOGcwNrm4FZL5SqQlgOlTgB1bQ0WGstqJjRjrXZUys611DlWt4DiuLgbfF2AlfmI_j1_ZwJ48zMIcWkgJm_XaLDmHVpVMapaqZjTquJNq6GrXSd1VWWvs8HrI4bPLfbJrMI2bvL7hstKKNYIqvOWGLZsDH0fsfu7yqjZUTEDFbOjYn6pZNXpoPKI-KfQGU-2FN_WQIfX</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Song, Yanjie</creator><creator>Zhang, Han</creator><creator>Liu, Yuanqiang</creator><creator>Liu, Jinzhang</creator><creator>Zhang, Hongbo</creator><creator>Song, Xiuguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4610-027X</orcidid><orcidid>https://orcid.org/0000-0002-4953-5781</orcidid><orcidid>https://orcid.org/0000-0002-3081-6778</orcidid><orcidid>https://orcid.org/0000-0003-2204-4584</orcidid><orcidid>https://orcid.org/0000-0002-1099-8869</orcidid><orcidid>https://orcid.org/0000-0002-6013-0582</orcidid></search><sort><creationdate>2020</creationdate><title>Background Filtering and Object Detection With a Stationary LiDAR Using a Layer-Based Method</title><author>Song, Yanjie ; Zhang, Han ; Liu, Yuanqiang ; Liu, Jinzhang ; Zhang, Hongbo ; Song, Xiuguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e7383dd3e6cccc2c948d5a4c2a00d3a0db6aca7c1613911b9d044fdb0dd16bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Background filtering</topic><topic>Clustering algorithms</topic><topic>Data processing</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Laser beams</topic><topic>Laser radar</topic><topic>layer-based method</topic><topic>Lidar</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Packet loss</topic><topic>Real time</topic><topic>Road construction</topic><topic>Roadsides</topic><topic>stationary LiDAR</topic><topic>Traffic information</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yanjie</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Liu, Yuanqiang</creatorcontrib><creatorcontrib>Liu, Jinzhang</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Song, Xiuguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yanjie</au><au>Zhang, Han</au><au>Liu, Yuanqiang</au><au>Liu, Jinzhang</au><au>Zhang, Hongbo</au><au>Song, Xiuguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background Filtering and Object Detection With a Stationary LiDAR Using a Layer-Based Method</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>184426</spage><epage>184436</epage><pages>184426-184436</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The connected vehicle environment is significant for the future road network. For constructing the connected vehicle environment, real-time data acquirement is always the prerequisite. Recently, using Light Detection and Ranging (LiDAR)-based roadside infrastructures are becoming a prevalent method of obtaining real-time traffic data. However, the collected raw data from LiDAR cannot usually be used directly. The steps of data processing, like background filtering and object detection, are necessary. The processed data can then be employed in different applications. This paper proposed a novel layer-based searching method that is established with the help of the point distribution features to distinguish moving objects from the point cloud. It aimed to address the unexpected influence of factors such as congested situations and package loss. The new approach was also evaluated compared with the state-of-the-art methods by applying field data. The results showed that the proposed method is more effective than other methods. This method may be applicable to other types of rotating LiDAR for improving the background filtering performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3029341</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4610-027X</orcidid><orcidid>https://orcid.org/0000-0002-4953-5781</orcidid><orcidid>https://orcid.org/0000-0002-3081-6778</orcidid><orcidid>https://orcid.org/0000-0003-2204-4584</orcidid><orcidid>https://orcid.org/0000-0002-1099-8869</orcidid><orcidid>https://orcid.org/0000-0002-6013-0582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.184426-184436
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453817309
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Background filtering
Clustering algorithms
Data processing
Filtering
Filtration
Laser beams
Laser radar
layer-based method
Lidar
Object detection
Object recognition
Packet loss
Real time
Road construction
Roadsides
stationary LiDAR
Traffic information
Transportation networks
title Background Filtering and Object Detection With a Stationary LiDAR Using a Layer-Based Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A51%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20Filtering%20and%20Object%20Detection%20With%20a%20Stationary%20LiDAR%20Using%20a%20Layer-Based%20Method&rft.jtitle=IEEE%20access&rft.au=Song,%20Yanjie&rft.date=2020&rft.volume=8&rft.spage=184426&rft.epage=184436&rft.pages=184426-184436&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3029341&rft_dat=%3Cproquest_doaj_%3E2453817309%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453817309&rft_id=info:pmid/&rft_ieee_id=9216093&rft_doaj_id=oai_doaj_org_article_e62fec85108b481d98527b9af6df4955&rfr_iscdi=true