Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint

•A volume-preserving time-fractional Allen-Cahn model is developed.•Adaptive linear second-order energy stable schemes are developed.•The proposed adaptive time-stepping algorithms are appropriate for accurately resolv- ing the initial singularity of solution and for efficiently capturing the fast d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2020-11, Vol.90, p.105366, Article 105366
Hauptverfasser: Ji, Bingquan, Liao, Hong-lin, Gong, Yuezheng, Zhang, Luming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105366
container_title Communications in nonlinear science & numerical simulation
container_volume 90
creator Ji, Bingquan
Liao, Hong-lin
Gong, Yuezheng
Zhang, Luming
description •A volume-preserving time-fractional Allen-Cahn model is developed.•Adaptive linear second-order energy stable schemes are developed.•The proposed adaptive time-stepping algorithms are appropriate for accurately resolv- ing the initial singularity of solution and for efficiently capturing the fast dynamics away initial time. A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1+ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implementation. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.
doi_str_mv 10.1016/j.cnsns.2020.105366
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453787811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570420301982</els_id><sourcerecordid>2453787811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-7422aa88082fba458ae2e1386c30ce596c0cfb7be392e4b5bcb73e5463e6fb013</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEuXxC7hY4pziV-L0wKGqeEmVuMDZsp0NdZTYre0U9d-TEM6cdjWaGe1-WXZH8JJgUj60S-Oii0uK6aQUrCzPsgWpRJULKvj5uGMs8kJgfpldxdjiMbUq-CI7rGu1T_YIqLMOVEARjHd17kMNAYGD8HVCMSndAYpmBz1E1PiAku0hb4IyyXqnOrTuOnD5Ru0cgsOgJhV927RDR98NPaCxNKagrEs32UWjugi3f_M6-3x--ti85tv3l7fNepsbxkjKBadUqarCFW204kWlgAJhVWkYNlCsSoNNo4UGtqLAdaGNFgwKXjIoG40Ju87u59598IcBYpKtH8J4a5SUF0yMcMjkYrPLBB9jgEbug-1VOEmC5cRWtvKXrZzYypntmHqcUzA-cLQQZDQWnIHaBjBJ1t7-m_8BXgeFgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453787811</pqid></control><display><type>article</type><title>Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ji, Bingquan ; Liao, Hong-lin ; Gong, Yuezheng ; Zhang, Luming</creator><creatorcontrib>Ji, Bingquan ; Liao, Hong-lin ; Gong, Yuezheng ; Zhang, Luming</creatorcontrib><description>•A volume-preserving time-fractional Allen-Cahn model is developed.•Adaptive linear second-order energy stable schemes are developed.•The proposed adaptive time-stepping algorithms are appropriate for accurately resolv- ing the initial singularity of solution and for efficiently capturing the fast dynamics away initial time. A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1+ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implementation. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2020.105366</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive algorithms ; Algorithms ; Invariant energy quadratization ; L1[formula omitted] Formula ; Lagrange multiplier ; Nonlinear equations ; Numerical analysis ; Scalar auxiliary variable ; Schrodinger equation ; Simulation ; Time dependence ; Time-fractional Aallen-Cahn equation with volume constraint ; Unconditional energy stable</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2020-11, Vol.90, p.105366, Article 105366</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-7422aa88082fba458ae2e1386c30ce596c0cfb7be392e4b5bcb73e5463e6fb013</citedby><cites>FETCH-LOGICAL-c331t-7422aa88082fba458ae2e1386c30ce596c0cfb7be392e4b5bcb73e5463e6fb013</cites><orcidid>0000-0001-5626-8784 ; 0000-0003-0777-6832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cnsns.2020.105366$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ji, Bingquan</creatorcontrib><creatorcontrib>Liao, Hong-lin</creatorcontrib><creatorcontrib>Gong, Yuezheng</creatorcontrib><creatorcontrib>Zhang, Luming</creatorcontrib><title>Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>•A volume-preserving time-fractional Allen-Cahn model is developed.•Adaptive linear second-order energy stable schemes are developed.•The proposed adaptive time-stepping algorithms are appropriate for accurately resolv- ing the initial singularity of solution and for efficiently capturing the fast dynamics away initial time. A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1+ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implementation. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Invariant energy quadratization</subject><subject>L1[formula omitted] Formula</subject><subject>Lagrange multiplier</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Scalar auxiliary variable</subject><subject>Schrodinger equation</subject><subject>Simulation</subject><subject>Time dependence</subject><subject>Time-fractional Aallen-Cahn equation with volume constraint</subject><subject>Unconditional energy stable</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEuXxC7hY4pziV-L0wKGqeEmVuMDZsp0NdZTYre0U9d-TEM6cdjWaGe1-WXZH8JJgUj60S-Oii0uK6aQUrCzPsgWpRJULKvj5uGMs8kJgfpldxdjiMbUq-CI7rGu1T_YIqLMOVEARjHd17kMNAYGD8HVCMSndAYpmBz1E1PiAku0hb4IyyXqnOrTuOnD5Ru0cgsOgJhV927RDR98NPaCxNKagrEs32UWjugi3f_M6-3x--ti85tv3l7fNepsbxkjKBadUqarCFW204kWlgAJhVWkYNlCsSoNNo4UGtqLAdaGNFgwKXjIoG40Ju87u59598IcBYpKtH8J4a5SUF0yMcMjkYrPLBB9jgEbug-1VOEmC5cRWtvKXrZzYypntmHqcUzA-cLQQZDQWnIHaBjBJ1t7-m_8BXgeFgQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Ji, Bingquan</creator><creator>Liao, Hong-lin</creator><creator>Gong, Yuezheng</creator><creator>Zhang, Luming</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5626-8784</orcidid><orcidid>https://orcid.org/0000-0003-0777-6832</orcidid></search><sort><creationdate>202011</creationdate><title>Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint</title><author>Ji, Bingquan ; Liao, Hong-lin ; Gong, Yuezheng ; Zhang, Luming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-7422aa88082fba458ae2e1386c30ce596c0cfb7be392e4b5bcb73e5463e6fb013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Invariant energy quadratization</topic><topic>L1[formula omitted] Formula</topic><topic>Lagrange multiplier</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Scalar auxiliary variable</topic><topic>Schrodinger equation</topic><topic>Simulation</topic><topic>Time dependence</topic><topic>Time-fractional Aallen-Cahn equation with volume constraint</topic><topic>Unconditional energy stable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Bingquan</creatorcontrib><creatorcontrib>Liao, Hong-lin</creatorcontrib><creatorcontrib>Gong, Yuezheng</creatorcontrib><creatorcontrib>Zhang, Luming</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Bingquan</au><au>Liao, Hong-lin</au><au>Gong, Yuezheng</au><au>Zhang, Luming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2020-11</date><risdate>2020</risdate><volume>90</volume><spage>105366</spage><pages>105366-</pages><artnum>105366</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>•A volume-preserving time-fractional Allen-Cahn model is developed.•Adaptive linear second-order energy stable schemes are developed.•The proposed adaptive time-stepping algorithms are appropriate for accurately resolv- ing the initial singularity of solution and for efficiently capturing the fast dynamics away initial time. A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invariant energy quadratization and scalar auxiliary variable approaches with the recent L1+ formula. The new developed methods are proved to be volume-preserving and unconditionally energy stable on arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are employed in numerical implementation. Numerical results show that the proposed algorithms are computationally efficient in multi-scale simulations, and appropriate for accurately resolving the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics away initial time.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2020.105366</doi><orcidid>https://orcid.org/0000-0001-5626-8784</orcidid><orcidid>https://orcid.org/0000-0003-0777-6832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2020-11, Vol.90, p.105366, Article 105366
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_journals_2453787811
source Elsevier ScienceDirect Journals Complete
subjects Adaptive algorithms
Algorithms
Invariant energy quadratization
L1[formula omitted] Formula
Lagrange multiplier
Nonlinear equations
Numerical analysis
Scalar auxiliary variable
Schrodinger equation
Simulation
Time dependence
Time-fractional Aallen-Cahn equation with volume constraint
Unconditional energy stable
title Adaptive linear second-order energy stable schemes for time-fractional Allen-Cahn equation with volume constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20linear%20second-order%20energy%20stable%20schemes%20for%20time-fractional%20Allen-Cahn%20equation%20with%20volume%20constraint&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Ji,%20Bingquan&rft.date=2020-11&rft.volume=90&rft.spage=105366&rft.pages=105366-&rft.artnum=105366&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2020.105366&rft_dat=%3Cproquest_cross%3E2453787811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453787811&rft_id=info:pmid/&rft_els_id=S1007570420301982&rfr_iscdi=true