Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm

As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Li, Ning, He, Fuxing, Ma, Wentao, Wang, Ruotong, Zhang, Xiaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Li, Ning
He, Fuxing
Ma, Wentao
Wang, Ruotong
Zhang, Xiaoping
description As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.
doi_str_mv 10.1109/ACCESS.2020.2985381
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453704265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9056544</ieee_id><doaj_id>oai_doaj_org_article_29740c7f74a64595919c2e09e1be38ab</doaj_id><sourcerecordid>2453704265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</originalsourceid><addsrcrecordid>eNpVUclOwzAUjBBIIOgXcLHEucVrEh9LKIsoAqksR8u1n4urNAYnZTny57gEIfDF1nuzeDRZdkjwiBAsj8dVNZnNRhRTPKKyFKwkW9keJbkcMsHy7T_v3WzQtkucTplGotjLPh99Y9FteIOIbiNYbzofGhQcuoLYQI0m712EFaAp6Nj4ZoGutXnyDaAT3YJFCXvqnYMITed1gr-Gev0tMa4XIfruaYV0cqhiaFv0oGtv9f_1QbbjdN3C4Ofez-7PJnfVxXB6c35ZjadDw0XZDV0OrABIKUgx54ZzR6mTfJOilIwaJp1lc-ywcdjyvLScSSoSpUgLii3bzy57XRv0Uj1Hv9LxQwXt1fcgxIXSsfOmBkVlwbEpXMF1zoUUkkhDAUsgc2Clnieto17rOYaXNbSdWoZ1bNL3FeXJFHOai4RiPcpswkdwv64Eq011qq9ObapTP9Ul1mHP8gDwy5BY5IJz9gXGFJT7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453704265</pqid></control><display><type>article</type><title>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Ning ; He, Fuxing ; Ma, Wentao ; Wang, Ruotong ; Zhang, Xiaoping</creator><creatorcontrib>Li, Ning ; He, Fuxing ; Ma, Wentao ; Wang, Ruotong ; Zhang, Xiaoping</creatorcontrib><description>As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985381</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification algorithms ; Differential evolutionary algorithm ; Error functions ; Evolutionary algorithms ; Evolutionary computation ; Fossil fuels ; Genetic algorithms ; k fold cross validation ; Kernel ; Kernel extreme learning machine ; Kernels ; Machine learning ; Model accuracy ; Optimization ; Prediction algorithms ; Regularization ; Sociology ; Statistics ; Training ; Wind power ; Wind power generation ; wind power prediction</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</citedby><cites>FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</cites><orcidid>0000-0003-0995-4989 ; 0000-0002-2781-1693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9056544$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>He, Fuxing</creatorcontrib><creatorcontrib>Ma, Wentao</creatorcontrib><creatorcontrib>Wang, Ruotong</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><title>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.</description><subject>Artificial neural networks</subject><subject>Classification algorithms</subject><subject>Differential evolutionary algorithm</subject><subject>Error functions</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Fossil fuels</subject><subject>Genetic algorithms</subject><subject>k fold cross validation</subject><subject>Kernel</subject><subject>Kernel extreme learning machine</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Regularization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>wind power prediction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUclOwzAUjBBIIOgXcLHEucVrEh9LKIsoAqksR8u1n4urNAYnZTny57gEIfDF1nuzeDRZdkjwiBAsj8dVNZnNRhRTPKKyFKwkW9keJbkcMsHy7T_v3WzQtkucTplGotjLPh99Y9FteIOIbiNYbzofGhQcuoLYQI0m712EFaAp6Nj4ZoGutXnyDaAT3YJFCXvqnYMITed1gr-Gev0tMa4XIfruaYV0cqhiaFv0oGtv9f_1QbbjdN3C4Ofez-7PJnfVxXB6c35ZjadDw0XZDV0OrABIKUgx54ZzR6mTfJOilIwaJp1lc-ywcdjyvLScSSoSpUgLii3bzy57XRv0Uj1Hv9LxQwXt1fcgxIXSsfOmBkVlwbEpXMF1zoUUkkhDAUsgc2Clnieto17rOYaXNbSdWoZ1bNL3FeXJFHOai4RiPcpswkdwv64Eq011qq9ObapTP9Ul1mHP8gDwy5BY5IJz9gXGFJT7</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Ning</creator><creator>He, Fuxing</creator><creator>Ma, Wentao</creator><creator>Wang, Ruotong</creator><creator>Zhang, Xiaoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0995-4989</orcidid><orcidid>https://orcid.org/0000-0002-2781-1693</orcidid></search><sort><creationdate>20200101</creationdate><title>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</title><author>Li, Ning ; He, Fuxing ; Ma, Wentao ; Wang, Ruotong ; Zhang, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification algorithms</topic><topic>Differential evolutionary algorithm</topic><topic>Error functions</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Fossil fuels</topic><topic>Genetic algorithms</topic><topic>k fold cross validation</topic><topic>Kernel</topic><topic>Kernel extreme learning machine</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Regularization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>wind power prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>He, Fuxing</creatorcontrib><creatorcontrib>Ma, Wentao</creatorcontrib><creatorcontrib>Wang, Ruotong</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ning</au><au>He, Fuxing</au><au>Ma, Wentao</au><au>Wang, Ruotong</au><au>Zhang, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985381</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0995-4989</orcidid><orcidid>https://orcid.org/0000-0002-2781-1693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453704265
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Classification algorithms
Differential evolutionary algorithm
Error functions
Evolutionary algorithms
Evolutionary computation
Fossil fuels
Genetic algorithms
k fold cross validation
Kernel
Kernel extreme learning machine
Kernels
Machine learning
Model accuracy
Optimization
Prediction algorithms
Regularization
Sociology
Statistics
Training
Wind power
Wind power generation
wind power prediction
title Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20Power%20Prediction%20of%20Kernel%20Extreme%20Learning%20Machine%20Based%20on%20Differential%20Evolution%20Algorithm%20and%20Cross%20Validation%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Li,%20Ning&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985381&rft_dat=%3Cproquest_doaj_%3E2453704265%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453704265&rft_id=info:pmid/&rft_ieee_id=9056544&rft_doaj_id=oai_doaj_org_article_29740c7f74a64595919c2e09e1be38ab&rfr_iscdi=true