Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm
As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of tra...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Ning He, Fuxing Ma, Wentao Wang, Ruotong Zhang, Xiaoping |
description | As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher. |
doi_str_mv | 10.1109/ACCESS.2020.2985381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453704265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9056544</ieee_id><doaj_id>oai_doaj_org_article_29740c7f74a64595919c2e09e1be38ab</doaj_id><sourcerecordid>2453704265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</originalsourceid><addsrcrecordid>eNpVUclOwzAUjBBIIOgXcLHEucVrEh9LKIsoAqksR8u1n4urNAYnZTny57gEIfDF1nuzeDRZdkjwiBAsj8dVNZnNRhRTPKKyFKwkW9keJbkcMsHy7T_v3WzQtkucTplGotjLPh99Y9FteIOIbiNYbzofGhQcuoLYQI0m712EFaAp6Nj4ZoGutXnyDaAT3YJFCXvqnYMITed1gr-Gev0tMa4XIfruaYV0cqhiaFv0oGtv9f_1QbbjdN3C4Ofez-7PJnfVxXB6c35ZjadDw0XZDV0OrABIKUgx54ZzR6mTfJOilIwaJp1lc-ywcdjyvLScSSoSpUgLii3bzy57XRv0Uj1Hv9LxQwXt1fcgxIXSsfOmBkVlwbEpXMF1zoUUkkhDAUsgc2Clnieto17rOYaXNbSdWoZ1bNL3FeXJFHOai4RiPcpswkdwv64Eq011qq9ObapTP9Ul1mHP8gDwy5BY5IJz9gXGFJT7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453704265</pqid></control><display><type>article</type><title>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Ning ; He, Fuxing ; Ma, Wentao ; Wang, Ruotong ; Zhang, Xiaoping</creator><creatorcontrib>Li, Ning ; He, Fuxing ; Ma, Wentao ; Wang, Ruotong ; Zhang, Xiaoping</creatorcontrib><description>As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985381</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Classification algorithms ; Differential evolutionary algorithm ; Error functions ; Evolutionary algorithms ; Evolutionary computation ; Fossil fuels ; Genetic algorithms ; k fold cross validation ; Kernel ; Kernel extreme learning machine ; Kernels ; Machine learning ; Model accuracy ; Optimization ; Prediction algorithms ; Regularization ; Sociology ; Statistics ; Training ; Wind power ; Wind power generation ; wind power prediction</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</citedby><cites>FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</cites><orcidid>0000-0003-0995-4989 ; 0000-0002-2781-1693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9056544$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27612,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>He, Fuxing</creatorcontrib><creatorcontrib>Ma, Wentao</creatorcontrib><creatorcontrib>Wang, Ruotong</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><title>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.</description><subject>Artificial neural networks</subject><subject>Classification algorithms</subject><subject>Differential evolutionary algorithm</subject><subject>Error functions</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Fossil fuels</subject><subject>Genetic algorithms</subject><subject>k fold cross validation</subject><subject>Kernel</subject><subject>Kernel extreme learning machine</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Optimization</subject><subject>Prediction algorithms</subject><subject>Regularization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Training</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>wind power prediction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVUclOwzAUjBBIIOgXcLHEucVrEh9LKIsoAqksR8u1n4urNAYnZTny57gEIfDF1nuzeDRZdkjwiBAsj8dVNZnNRhRTPKKyFKwkW9keJbkcMsHy7T_v3WzQtkucTplGotjLPh99Y9FteIOIbiNYbzofGhQcuoLYQI0m712EFaAp6Nj4ZoGutXnyDaAT3YJFCXvqnYMITed1gr-Gev0tMa4XIfruaYV0cqhiaFv0oGtv9f_1QbbjdN3C4Ofez-7PJnfVxXB6c35ZjadDw0XZDV0OrABIKUgx54ZzR6mTfJOilIwaJp1lc-ywcdjyvLScSSoSpUgLii3bzy57XRv0Uj1Hv9LxQwXt1fcgxIXSsfOmBkVlwbEpXMF1zoUUkkhDAUsgc2Clnieto17rOYaXNbSdWoZ1bNL3FeXJFHOai4RiPcpswkdwv64Eq011qq9ObapTP9Ul1mHP8gDwy5BY5IJz9gXGFJT7</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Li, Ning</creator><creator>He, Fuxing</creator><creator>Ma, Wentao</creator><creator>Wang, Ruotong</creator><creator>Zhang, Xiaoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0995-4989</orcidid><orcidid>https://orcid.org/0000-0002-2781-1693</orcidid></search><sort><creationdate>20200101</creationdate><title>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</title><author>Li, Ning ; He, Fuxing ; Ma, Wentao ; Wang, Ruotong ; Zhang, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f6e37ee35317b4c44f22f9469578932c39fd3b0f0cf0d468d4392537e79fd20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification algorithms</topic><topic>Differential evolutionary algorithm</topic><topic>Error functions</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Fossil fuels</topic><topic>Genetic algorithms</topic><topic>k fold cross validation</topic><topic>Kernel</topic><topic>Kernel extreme learning machine</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Optimization</topic><topic>Prediction algorithms</topic><topic>Regularization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Training</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>wind power prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>He, Fuxing</creatorcontrib><creatorcontrib>Ma, Wentao</creatorcontrib><creatorcontrib>Wang, Ruotong</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ning</au><au>He, Fuxing</au><au>Ma, Wentao</au><au>Wang, Ruotong</au><au>Zhang, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As fossil fuel is being depleted, the percentage of wind power capacity in total electricity generation is increasing. In order to improve the absorption capacity of wind power, wind power prediction has been introduced. Aiming at the disadvantage of low prediction accuracy and unstable model of traditional extreme learning machine (ELM), a kernel extreme learning machine based on differential evolution (DE) and cross validation optimization method is proposed to predict short-term wind power generation. Firstly, the average mean square error (MSE) verified by k folding and cross validation is adopted as the error function of the model to improve the stability and generalization performance of the model. Secondly, differential evolution algorithm is used to optimize the regularization coefficient and kernel width of the kernel extreme learning machine with cross validation and improve the precision of model is 8.34%. Finally, compared with the application of extreme learning machine with genetic algorithm and cross validation to a wind farm prediction case in northwest China, the experimental results show that the convergence rate of this method is twice that of genetic algorithm (GA) optimization algorithm, and the accuracy is higher.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985381</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0995-4989</orcidid><orcidid>https://orcid.org/0000-0002-2781-1693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453704265 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Classification algorithms Differential evolutionary algorithm Error functions Evolutionary algorithms Evolutionary computation Fossil fuels Genetic algorithms k fold cross validation Kernel Kernel extreme learning machine Kernels Machine learning Model accuracy Optimization Prediction algorithms Regularization Sociology Statistics Training Wind power Wind power generation wind power prediction |
title | Wind Power Prediction of Kernel Extreme Learning Machine Based on Differential Evolution Algorithm and Cross Validation Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A40%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20Power%20Prediction%20of%20Kernel%20Extreme%20Learning%20Machine%20Based%20on%20Differential%20Evolution%20Algorithm%20and%20Cross%20Validation%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Li,%20Ning&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985381&rft_dat=%3Cproquest_doaj_%3E2453704265%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453704265&rft_id=info:pmid/&rft_ieee_id=9056544&rft_doaj_id=oai_doaj_org_article_29740c7f74a64595919c2e09e1be38ab&rfr_iscdi=true |