A Novel Active Learning Algorithm for Robust Image Classification
Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodolo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.71106-71116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71116 |
---|---|
container_issue | |
container_start_page | 71106 |
container_title | IEEE access |
container_volume | 8 |
creator | Xiong, Xingliang Fan, Mingyu Yu, Chuang Hong, Zhenjie |
description | Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model. |
doi_str_mv | 10.1109/ACCESS.2020.2968082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453703581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8963974</ieee_id><doaj_id>oai_doaj_org_article_b88ddfb0bc3b4b7d9e7f120e47cef801</doaj_id><sourcerecordid>2453703581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1ee32bc2624a222c5f211c781b7e81897bb955f5fbc7c9d58a5a3e53cb0336a63</originalsourceid><addsrcrecordid>eNpNUE1LAzEUXETBUvsLelnw3JqPzSY5LkvVQlGweg5J9qWmbJuabAv-e7duEd_lPYaZecNk2RSjOcZIPlR1vViv5wQRNCeyFEiQq2xEcClnlNHy-t99m01S2qJ-RA8xPsqqKn8JJ2jzynb-BPkKdNz7_Sav2k2Ivvvc5S7E_C2YY-ry5U5vIK9bnZJ33urOh_1dduN0m2By2ePs43HxXj_PVq9Py7pazSxlopthAEqMJSUpNCHEMkcwtlxgw0FgIbkxkjHHnLHcyoYJzTQFRq1BlJa6pONsOfg2QW_VIfqdjt8qaK9-gRA3SsfO2xaUEaJpnEHGUlMY3kjgDhMEBbfgBMK91_3gdYjh6wipU9twjPs-viIFoxz1kc8sOrBsDClFcH9fMVLn6tVQvTpXry7V96rpoPIA8KcQsqSSF_QHCOl-hQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453703581</pqid></control><display><type>article</type><title>A Novel Active Learning Algorithm for Robust Image Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiong, Xingliang ; Fan, Mingyu ; Yu, Chuang ; Hong, Zhenjie</creator><creatorcontrib>Xiong, Xingliang ; Fan, Mingyu ; Yu, Chuang ; Hong, Zhenjie</creatorcontrib><description>Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2968082</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active learning ; Algorithms ; Classification ; Classification algorithms ; experimental design ; Image classification ; Kernel ; Labeling ; local linear reconstruction ; Machine learning ; manifold learning ; Manifolds ; STEM ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.71106-71116</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-1ee32bc2624a222c5f211c781b7e81897bb955f5fbc7c9d58a5a3e53cb0336a63</cites><orcidid>0000-0002-1510-3665 ; 0000-0003-3418-2474 ; 0000-0002-6867-6387 ; 0000-0002-9916-6929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8963974$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Xiong, Xingliang</creatorcontrib><creatorcontrib>Fan, Mingyu</creatorcontrib><creatorcontrib>Yu, Chuang</creatorcontrib><creatorcontrib>Hong, Zhenjie</creatorcontrib><title>A Novel Active Learning Algorithm for Robust Image Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>experimental design</subject><subject>Image classification</subject><subject>Kernel</subject><subject>Labeling</subject><subject>local linear reconstruction</subject><subject>Machine learning</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>STEM</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUXETBUvsLelnw3JqPzSY5LkvVQlGweg5J9qWmbJuabAv-e7duEd_lPYaZecNk2RSjOcZIPlR1vViv5wQRNCeyFEiQq2xEcClnlNHy-t99m01S2qJ-RA8xPsqqKn8JJ2jzynb-BPkKdNz7_Sav2k2Ivvvc5S7E_C2YY-ry5U5vIK9bnZJ33urOh_1dduN0m2By2ePs43HxXj_PVq9Py7pazSxlopthAEqMJSUpNCHEMkcwtlxgw0FgIbkxkjHHnLHcyoYJzTQFRq1BlJa6pONsOfg2QW_VIfqdjt8qaK9-gRA3SsfO2xaUEaJpnEHGUlMY3kjgDhMEBbfgBMK91_3gdYjh6wipU9twjPs-viIFoxz1kc8sOrBsDClFcH9fMVLn6tVQvTpXry7V96rpoPIA8KcQsqSSF_QHCOl-hQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xiong, Xingliang</creator><creator>Fan, Mingyu</creator><creator>Yu, Chuang</creator><creator>Hong, Zhenjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1510-3665</orcidid><orcidid>https://orcid.org/0000-0003-3418-2474</orcidid><orcidid>https://orcid.org/0000-0002-6867-6387</orcidid><orcidid>https://orcid.org/0000-0002-9916-6929</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Active Learning Algorithm for Robust Image Classification</title><author>Xiong, Xingliang ; Fan, Mingyu ; Yu, Chuang ; Hong, Zhenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1ee32bc2624a222c5f211c781b7e81897bb955f5fbc7c9d58a5a3e53cb0336a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>experimental design</topic><topic>Image classification</topic><topic>Kernel</topic><topic>Labeling</topic><topic>local linear reconstruction</topic><topic>Machine learning</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>STEM</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Xingliang</creatorcontrib><creatorcontrib>Fan, Mingyu</creatorcontrib><creatorcontrib>Yu, Chuang</creatorcontrib><creatorcontrib>Hong, Zhenjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Xingliang</au><au>Fan, Mingyu</au><au>Yu, Chuang</au><au>Hong, Zhenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Active Learning Algorithm for Robust Image Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>71106</spage><epage>71116</epage><pages>71106-71116</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2968082</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1510-3665</orcidid><orcidid>https://orcid.org/0000-0003-3418-2474</orcidid><orcidid>https://orcid.org/0000-0002-6867-6387</orcidid><orcidid>https://orcid.org/0000-0002-9916-6929</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.71106-71116 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453703581 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Active learning Algorithms Classification Classification algorithms experimental design Image classification Kernel Labeling local linear reconstruction Machine learning manifold learning Manifolds STEM Training |
title | A Novel Active Learning Algorithm for Robust Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Active%20Learning%20Algorithm%20for%20Robust%20Image%20Classification&rft.jtitle=IEEE%20access&rft.au=Xiong,%20Xingliang&rft.date=2020&rft.volume=8&rft.spage=71106&rft.epage=71116&rft.pages=71106-71116&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2968082&rft_dat=%3Cproquest_cross%3E2453703581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453703581&rft_id=info:pmid/&rft_ieee_id=8963974&rft_doaj_id=oai_doaj_org_article_b88ddfb0bc3b4b7d9e7f120e47cef801&rfr_iscdi=true |