A Novel Active Learning Algorithm for Robust Image Classification

Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.71106-71116
Hauptverfasser: Xiong, Xingliang, Fan, Mingyu, Yu, Chuang, Hong, Zhenjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71116
container_issue
container_start_page 71106
container_title IEEE access
container_volume 8
creator Xiong, Xingliang
Fan, Mingyu
Yu, Chuang
Hong, Zhenjie
description Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.
doi_str_mv 10.1109/ACCESS.2020.2968082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453703581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8963974</ieee_id><doaj_id>oai_doaj_org_article_b88ddfb0bc3b4b7d9e7f120e47cef801</doaj_id><sourcerecordid>2453703581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1ee32bc2624a222c5f211c781b7e81897bb955f5fbc7c9d58a5a3e53cb0336a63</originalsourceid><addsrcrecordid>eNpNUE1LAzEUXETBUvsLelnw3JqPzSY5LkvVQlGweg5J9qWmbJuabAv-e7duEd_lPYaZecNk2RSjOcZIPlR1vViv5wQRNCeyFEiQq2xEcClnlNHy-t99m01S2qJ-RA8xPsqqKn8JJ2jzynb-BPkKdNz7_Sav2k2Ivvvc5S7E_C2YY-ry5U5vIK9bnZJ33urOh_1dduN0m2By2ePs43HxXj_PVq9Py7pazSxlopthAEqMJSUpNCHEMkcwtlxgw0FgIbkxkjHHnLHcyoYJzTQFRq1BlJa6pONsOfg2QW_VIfqdjt8qaK9-gRA3SsfO2xaUEaJpnEHGUlMY3kjgDhMEBbfgBMK91_3gdYjh6wipU9twjPs-viIFoxz1kc8sOrBsDClFcH9fMVLn6tVQvTpXry7V96rpoPIA8KcQsqSSF_QHCOl-hQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453703581</pqid></control><display><type>article</type><title>A Novel Active Learning Algorithm for Robust Image Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xiong, Xingliang ; Fan, Mingyu ; Yu, Chuang ; Hong, Zhenjie</creator><creatorcontrib>Xiong, Xingliang ; Fan, Mingyu ; Yu, Chuang ; Hong, Zhenjie</creatorcontrib><description>Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2968082</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active learning ; Algorithms ; Classification ; Classification algorithms ; experimental design ; Image classification ; Kernel ; Labeling ; local linear reconstruction ; Machine learning ; manifold learning ; Manifolds ; STEM ; Training</subject><ispartof>IEEE access, 2020, Vol.8, p.71106-71116</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-1ee32bc2624a222c5f211c781b7e81897bb955f5fbc7c9d58a5a3e53cb0336a63</cites><orcidid>0000-0002-1510-3665 ; 0000-0003-3418-2474 ; 0000-0002-6867-6387 ; 0000-0002-9916-6929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8963974$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Xiong, Xingliang</creatorcontrib><creatorcontrib>Fan, Mingyu</creatorcontrib><creatorcontrib>Yu, Chuang</creatorcontrib><creatorcontrib>Hong, Zhenjie</creatorcontrib><title>A Novel Active Learning Algorithm for Robust Image Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.</description><subject>Active learning</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>experimental design</subject><subject>Image classification</subject><subject>Kernel</subject><subject>Labeling</subject><subject>local linear reconstruction</subject><subject>Machine learning</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>STEM</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUXETBUvsLelnw3JqPzSY5LkvVQlGweg5J9qWmbJuabAv-e7duEd_lPYaZecNk2RSjOcZIPlR1vViv5wQRNCeyFEiQq2xEcClnlNHy-t99m01S2qJ-RA8xPsqqKn8JJ2jzynb-BPkKdNz7_Sav2k2Ivvvc5S7E_C2YY-ry5U5vIK9bnZJ33urOh_1dduN0m2By2ePs43HxXj_PVq9Py7pazSxlopthAEqMJSUpNCHEMkcwtlxgw0FgIbkxkjHHnLHcyoYJzTQFRq1BlJa6pONsOfg2QW_VIfqdjt8qaK9-gRA3SsfO2xaUEaJpnEHGUlMY3kjgDhMEBbfgBMK91_3gdYjh6wipU9twjPs-viIFoxz1kc8sOrBsDClFcH9fMVLn6tVQvTpXry7V96rpoPIA8KcQsqSSF_QHCOl-hQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xiong, Xingliang</creator><creator>Fan, Mingyu</creator><creator>Yu, Chuang</creator><creator>Hong, Zhenjie</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1510-3665</orcidid><orcidid>https://orcid.org/0000-0003-3418-2474</orcidid><orcidid>https://orcid.org/0000-0002-6867-6387</orcidid><orcidid>https://orcid.org/0000-0002-9916-6929</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Active Learning Algorithm for Robust Image Classification</title><author>Xiong, Xingliang ; Fan, Mingyu ; Yu, Chuang ; Hong, Zhenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1ee32bc2624a222c5f211c781b7e81897bb955f5fbc7c9d58a5a3e53cb0336a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active learning</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>experimental design</topic><topic>Image classification</topic><topic>Kernel</topic><topic>Labeling</topic><topic>local linear reconstruction</topic><topic>Machine learning</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>STEM</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Xingliang</creatorcontrib><creatorcontrib>Fan, Mingyu</creatorcontrib><creatorcontrib>Yu, Chuang</creatorcontrib><creatorcontrib>Hong, Zhenjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Xingliang</au><au>Fan, Mingyu</au><au>Yu, Chuang</au><au>Hong, Zhenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Active Learning Algorithm for Robust Image Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>71106</spage><epage>71116</epage><pages>71106-71116</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Training samples need to be labeled before being used to train classification model, which usually takes too much labor and material resources. Recently, this problem has attracted widespread attention. In order to reduce the workload of labeling samples, we propose a novel active learning methodology, which uses locally linear reconstruction coefficients to construct semi-supervised data manifold adaptive kernel space. Comparing the new method with other sampling approaches on several real-world image datasets, experimental results indicate that the novel algorithm has preferable classification ability. Especially, it can show higher classification accuracy under the condition that only a few samples are selected to train the classifier model.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2968082</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1510-3665</orcidid><orcidid>https://orcid.org/0000-0003-3418-2474</orcidid><orcidid>https://orcid.org/0000-0002-6867-6387</orcidid><orcidid>https://orcid.org/0000-0002-9916-6929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.71106-71116
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453703581
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Active learning
Algorithms
Classification
Classification algorithms
experimental design
Image classification
Kernel
Labeling
local linear reconstruction
Machine learning
manifold learning
Manifolds
STEM
Training
title A Novel Active Learning Algorithm for Robust Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Active%20Learning%20Algorithm%20for%20Robust%20Image%20Classification&rft.jtitle=IEEE%20access&rft.au=Xiong,%20Xingliang&rft.date=2020&rft.volume=8&rft.spage=71106&rft.epage=71116&rft.pages=71106-71116&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2968082&rft_dat=%3Cproquest_cross%3E2453703581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453703581&rft_id=info:pmid/&rft_ieee_id=8963974&rft_doaj_id=oai_doaj_org_article_b88ddfb0bc3b4b7d9e7f120e47cef801&rfr_iscdi=true