SPD Data Dictionary Learning Based on Kernel Learning and Riemannian Metric
The use of regional covariance descriptors to generate feature data represented by Symmetric Positive Definite (SPD) matrices from images or videos has become increasingly common in machine learning. However, SPD data itself does not constitute a vector space, and dictionary learning involves a larg...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.61956-61972 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61972 |
---|---|
container_issue | |
container_start_page | 61956 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhuang, Rixin Ma, Zhengming Feng, Weijia Lin, Yuanping |
description | The use of regional covariance descriptors to generate feature data represented by Symmetric Positive Definite (SPD) matrices from images or videos has become increasingly common in machine learning. However, SPD data itself does not constitute a vector space, and dictionary learning involves a large number of linear operations, so dictionary learning cannot be performed directly on SPD data. For this reason, a more common method is to map the SPD data to the Reproducing Kernel Hilbert Space (RKHS). The so-called kernel learning is to find the most suitable RKHS for specific tasks. RKHS can be uniquely generated by a kernel function. Therefore, RKHS learning can also be considered as kernel learning. In this article, there are two main contributions. The first contribution is to propose a framework which based on Kernel Learning and Riemannian Metric (KLRM). Usually the learnable kernel function framework is to learn some parameters in the kernel function. The second contribution is dictionary learning by applying KLRM to SPD data. The SPD data is transformed into the RKHS generated by KLRM, and RKHS after training provides the most suitable working space for dictionary learning. Under the proposed framework, we design a positive definite kernel function, which is defined by the Log-Euclidean metric. This function can be transformed into a corresponding Riemannian kernel. The experimental results provided in this paper is compared with other state-of-the-art algorithms for SPD data dictionary learning and show that the proposed algorithm achieves better results. |
doi_str_mv | 10.1109/ACCESS.2020.2984941 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453699973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9052680</ieee_id><doaj_id>oai_doaj_org_article_06483b675f654dfeb26c3ef9e3b98b10</doaj_id><sourcerecordid>2453699973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-70d1a403d4b5419957f879a7c097b28cc4363ef265d1b6230708d412cfa130333</originalsourceid><addsrcrecordid>eNpNUU1PwzAMrRBITLBfsEslzh3OR9PkOLoB04ZADM5RmqZTpi0ZaXfg35PRaeCLLdvv-ckvSUYIxgiBuJ-U5Wy1GmPAMMaCU0HRRTLAiImM5IRd_quvk2HbbiAGj628GCSL1ds0napOpVOrO-udCt_p0qjgrFunD6o1depdujDBme3fQLk6fbdmp5yzyqUvpgtW3yZXjdq2ZnjKN8nn4-yjfM6Wr0_zcrLMNAXeZQXUSFEgNa1yikSU0fBCqEKDKCrMtaaEEdNglteoYphAAbymCOtGIQKEkJtk3vPWXm3kPthdFC29svK34cNaqtBZvTUSGOWkYkXesJzWjakw05FbGFIJXiGIXHc91z74r4NpO7nxh-CifIlp_JgQojheJP2WDr5tg2nOVxHIowmyN0EeTZAnEyJq1KOsMeaMEJBjxoH8AKjof7o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699973</pqid></control><display><type>article</type><title>SPD Data Dictionary Learning Based on Kernel Learning and Riemannian Metric</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhuang, Rixin ; Ma, Zhengming ; Feng, Weijia ; Lin, Yuanping</creator><creatorcontrib>Zhuang, Rixin ; Ma, Zhengming ; Feng, Weijia ; Lin, Yuanping</creatorcontrib><description>The use of regional covariance descriptors to generate feature data represented by Symmetric Positive Definite (SPD) matrices from images or videos has become increasingly common in machine learning. However, SPD data itself does not constitute a vector space, and dictionary learning involves a large number of linear operations, so dictionary learning cannot be performed directly on SPD data. For this reason, a more common method is to map the SPD data to the Reproducing Kernel Hilbert Space (RKHS). The so-called kernel learning is to find the most suitable RKHS for specific tasks. RKHS can be uniquely generated by a kernel function. Therefore, RKHS learning can also be considered as kernel learning. In this article, there are two main contributions. The first contribution is to propose a framework which based on Kernel Learning and Riemannian Metric (KLRM). Usually the learnable kernel function framework is to learn some parameters in the kernel function. The second contribution is dictionary learning by applying KLRM to SPD data. The SPD data is transformed into the RKHS generated by KLRM, and RKHS after training provides the most suitable working space for dictionary learning. Under the proposed framework, we design a positive definite kernel function, which is defined by the Log-Euclidean metric. This function can be transformed into a corresponding Riemannian kernel. The experimental results provided in this paper is compared with other state-of-the-art algorithms for SPD data dictionary learning and show that the proposed algorithm achieves better results.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2984941</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Covariance ; Data dictionaries ; Dictionaries ; Dictionary learning ; Encoding ; Hilbert space ; Kernel ; Kernel functions ; Log-Euclidean metric ; Machine learning ; Manifolds ; Mathematical analysis ; Matrix methods ; reproducing Kernel Hilbert space ; Sparse matrices ; symmetric positive definite matrix</subject><ispartof>IEEE access, 2020, Vol.8, p.61956-61972</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-70d1a403d4b5419957f879a7c097b28cc4363ef265d1b6230708d412cfa130333</citedby><cites>FETCH-LOGICAL-c408t-70d1a403d4b5419957f879a7c097b28cc4363ef265d1b6230708d412cfa130333</cites><orcidid>0000-0001-6553-1070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9052680$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhuang, Rixin</creatorcontrib><creatorcontrib>Ma, Zhengming</creatorcontrib><creatorcontrib>Feng, Weijia</creatorcontrib><creatorcontrib>Lin, Yuanping</creatorcontrib><title>SPD Data Dictionary Learning Based on Kernel Learning and Riemannian Metric</title><title>IEEE access</title><addtitle>Access</addtitle><description>The use of regional covariance descriptors to generate feature data represented by Symmetric Positive Definite (SPD) matrices from images or videos has become increasingly common in machine learning. However, SPD data itself does not constitute a vector space, and dictionary learning involves a large number of linear operations, so dictionary learning cannot be performed directly on SPD data. For this reason, a more common method is to map the SPD data to the Reproducing Kernel Hilbert Space (RKHS). The so-called kernel learning is to find the most suitable RKHS for specific tasks. RKHS can be uniquely generated by a kernel function. Therefore, RKHS learning can also be considered as kernel learning. In this article, there are two main contributions. The first contribution is to propose a framework which based on Kernel Learning and Riemannian Metric (KLRM). Usually the learnable kernel function framework is to learn some parameters in the kernel function. The second contribution is dictionary learning by applying KLRM to SPD data. The SPD data is transformed into the RKHS generated by KLRM, and RKHS after training provides the most suitable working space for dictionary learning. Under the proposed framework, we design a positive definite kernel function, which is defined by the Log-Euclidean metric. This function can be transformed into a corresponding Riemannian kernel. The experimental results provided in this paper is compared with other state-of-the-art algorithms for SPD data dictionary learning and show that the proposed algorithm achieves better results.</description><subject>Algorithms</subject><subject>Covariance</subject><subject>Data dictionaries</subject><subject>Dictionaries</subject><subject>Dictionary learning</subject><subject>Encoding</subject><subject>Hilbert space</subject><subject>Kernel</subject><subject>Kernel functions</subject><subject>Log-Euclidean metric</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>reproducing Kernel Hilbert space</subject><subject>Sparse matrices</subject><subject>symmetric positive definite matrix</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMrRBITLBfsEslzh3OR9PkOLoB04ZADM5RmqZTpi0ZaXfg35PRaeCLLdvv-ckvSUYIxgiBuJ-U5Wy1GmPAMMaCU0HRRTLAiImM5IRd_quvk2HbbiAGj628GCSL1ds0napOpVOrO-udCt_p0qjgrFunD6o1depdujDBme3fQLk6fbdmp5yzyqUvpgtW3yZXjdq2ZnjKN8nn4-yjfM6Wr0_zcrLMNAXeZQXUSFEgNa1yikSU0fBCqEKDKCrMtaaEEdNglteoYphAAbymCOtGIQKEkJtk3vPWXm3kPthdFC29svK34cNaqtBZvTUSGOWkYkXesJzWjakw05FbGFIJXiGIXHc91z74r4NpO7nxh-CifIlp_JgQojheJP2WDr5tg2nOVxHIowmyN0EeTZAnEyJq1KOsMeaMEJBjxoH8AKjof7o</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhuang, Rixin</creator><creator>Ma, Zhengming</creator><creator>Feng, Weijia</creator><creator>Lin, Yuanping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6553-1070</orcidid></search><sort><creationdate>2020</creationdate><title>SPD Data Dictionary Learning Based on Kernel Learning and Riemannian Metric</title><author>Zhuang, Rixin ; Ma, Zhengming ; Feng, Weijia ; Lin, Yuanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-70d1a403d4b5419957f879a7c097b28cc4363ef265d1b6230708d412cfa130333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Covariance</topic><topic>Data dictionaries</topic><topic>Dictionaries</topic><topic>Dictionary learning</topic><topic>Encoding</topic><topic>Hilbert space</topic><topic>Kernel</topic><topic>Kernel functions</topic><topic>Log-Euclidean metric</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>reproducing Kernel Hilbert space</topic><topic>Sparse matrices</topic><topic>symmetric positive definite matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Rixin</creatorcontrib><creatorcontrib>Ma, Zhengming</creatorcontrib><creatorcontrib>Feng, Weijia</creatorcontrib><creatorcontrib>Lin, Yuanping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Rixin</au><au>Ma, Zhengming</au><au>Feng, Weijia</au><au>Lin, Yuanping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPD Data Dictionary Learning Based on Kernel Learning and Riemannian Metric</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>61956</spage><epage>61972</epage><pages>61956-61972</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The use of regional covariance descriptors to generate feature data represented by Symmetric Positive Definite (SPD) matrices from images or videos has become increasingly common in machine learning. However, SPD data itself does not constitute a vector space, and dictionary learning involves a large number of linear operations, so dictionary learning cannot be performed directly on SPD data. For this reason, a more common method is to map the SPD data to the Reproducing Kernel Hilbert Space (RKHS). The so-called kernel learning is to find the most suitable RKHS for specific tasks. RKHS can be uniquely generated by a kernel function. Therefore, RKHS learning can also be considered as kernel learning. In this article, there are two main contributions. The first contribution is to propose a framework which based on Kernel Learning and Riemannian Metric (KLRM). Usually the learnable kernel function framework is to learn some parameters in the kernel function. The second contribution is dictionary learning by applying KLRM to SPD data. The SPD data is transformed into the RKHS generated by KLRM, and RKHS after training provides the most suitable working space for dictionary learning. Under the proposed framework, we design a positive definite kernel function, which is defined by the Log-Euclidean metric. This function can be transformed into a corresponding Riemannian kernel. The experimental results provided in this paper is compared with other state-of-the-art algorithms for SPD data dictionary learning and show that the proposed algorithm achieves better results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2984941</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6553-1070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.61956-61972 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453699973 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Covariance Data dictionaries Dictionaries Dictionary learning Encoding Hilbert space Kernel Kernel functions Log-Euclidean metric Machine learning Manifolds Mathematical analysis Matrix methods reproducing Kernel Hilbert space Sparse matrices symmetric positive definite matrix |
title | SPD Data Dictionary Learning Based on Kernel Learning and Riemannian Metric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPD%20Data%20Dictionary%20Learning%20Based%20on%20Kernel%20Learning%20and%20Riemannian%20Metric&rft.jtitle=IEEE%20access&rft.au=Zhuang,%20Rixin&rft.date=2020&rft.volume=8&rft.spage=61956&rft.epage=61972&rft.pages=61956-61972&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2984941&rft_dat=%3Cproquest_doaj_%3E2453699973%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699973&rft_id=info:pmid/&rft_ieee_id=9052680&rft_doaj_id=oai_doaj_org_article_06483b675f654dfeb26c3ef9e3b98b10&rfr_iscdi=true |