Collaborative Vehicular Edge Computing towards Greener ITS

In order to achieve a greener intelligent transport system (ITS), an efficient collaboration between vehicles is required to manage computation task processing with low latency. In this paper, we propose a collaborative edge computing scheme for vehicular Internet-of-things towards a greener ITS. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Buda, Su, Guleng, Siri, Wu, Celimuge, Zhang, Jiefang, Yau, Kok-Lim Alvin, Ji, Yusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Buda, Su
Guleng, Siri
Wu, Celimuge
Zhang, Jiefang
Yau, Kok-Lim Alvin
Ji, Yusheng
description In order to achieve a greener intelligent transport system (ITS), an efficient collaboration between vehicles is required to manage computation task processing with low latency. In this paper, we propose a collaborative edge computing scheme for vehicular Internet-of-things towards a greener ITS. The proposed scheme uses some vehicles as edge nodes, which are responsible for finding task processor nodes on behalf of a task requester node by considering the end-to-end task response time. The proposed scheme employs a two-stage approach where the first stage enables an efficient networking and computing architecture by forming vehicle clusters based on the edge architecture, and the second stage optimizes offloading tasks based on the architecture. We use realistic computer simulations to compare the proposed scheme with existing baselines, and show its superiority in terms of task offloading performance.
doi_str_mv 10.1109/ACCESS.2020.2985731
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453699629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9057430</ieee_id><doaj_id>oai_doaj_org_article_f70b82bb00734fc59059a22e9d09800a</doaj_id><sourcerecordid>2453699629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-98a865c48fa72b1a74ea495b6a45a019ac1cc9195ed66d70121103dc332665b03</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiQT5BVyaeAZnv7veSINIQuIB9LqZbrdYUljcFo3_3sUa4lxmMpn3nZknScYEpoSAfpjl-Xy9nlKgMKU6E4qRq2RAidQTJpi8_lffJqO23UGMLLaEGiSPuW8aLHzArv506Zt7r-2pwZDOy61Lc78_nrr6sE07_4WhbNNFcO7gQrrcrO-Smwqb1o3-8jB5fZpv8ufJ6mWxzGerieWKdxOdYSaF5VmFihYEFXfItSgkcoFANFpirSZauFLKUgGh8StWWsaolKIANkyWvW_pcWeOod5j-DYea_Pb8GFrMHS1bZypFBQZLQoAxXhlhQahkVKnS9AZAEav-97rGPzHybWd2flTOMTzDeURkNaS6jjF-ikbfNsGV122EjBn5qZnbs7MzR_zqBr3qto5d1HEExRnwH4Ac2p6fg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699629</pqid></control><display><type>article</type><title>Collaborative Vehicular Edge Computing towards Greener ITS</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Buda, Su ; Guleng, Siri ; Wu, Celimuge ; Zhang, Jiefang ; Yau, Kok-Lim Alvin ; Ji, Yusheng</creator><creatorcontrib>Buda, Su ; Guleng, Siri ; Wu, Celimuge ; Zhang, Jiefang ; Yau, Kok-Lim Alvin ; Ji, Yusheng</creatorcontrib><description>In order to achieve a greener intelligent transport system (ITS), an efficient collaboration between vehicles is required to manage computation task processing with low latency. In this paper, we propose a collaborative edge computing scheme for vehicular Internet-of-things towards a greener ITS. The proposed scheme uses some vehicles as edge nodes, which are responsible for finding task processor nodes on behalf of a task requester node by considering the end-to-end task response time. The proposed scheme employs a two-stage approach where the first stage enables an efficient networking and computing architecture by forming vehicle clusters based on the edge architecture, and the second stage optimizes offloading tasks based on the architecture. We use realistic computer simulations to compare the proposed scheme with existing baselines, and show its superiority in terms of task offloading performance.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2985731</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Collaboration ; Collaborative intelligence ; Computation offloading ; Delays ; Edge computing ; Green ITS ; Green products ; Intelligent transportation systems ; Microprocessors ; Network latency ; Nodes ; Quality of service ; Response time ; Task analysis ; Time factors ; Vehicles ; Vehicular Internet of Things</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-98a865c48fa72b1a74ea495b6a45a019ac1cc9195ed66d70121103dc332665b03</citedby><cites>FETCH-LOGICAL-c474t-98a865c48fa72b1a74ea495b6a45a019ac1cc9195ed66d70121103dc332665b03</cites><orcidid>0000-0002-8611-0109 ; 0000-0003-4364-8491 ; 0000-0003-3110-2782 ; 0000-0001-6853-5878 ; 0000-0002-8463-6035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9057430$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Buda, Su</creatorcontrib><creatorcontrib>Guleng, Siri</creatorcontrib><creatorcontrib>Wu, Celimuge</creatorcontrib><creatorcontrib>Zhang, Jiefang</creatorcontrib><creatorcontrib>Yau, Kok-Lim Alvin</creatorcontrib><creatorcontrib>Ji, Yusheng</creatorcontrib><title>Collaborative Vehicular Edge Computing towards Greener ITS</title><title>IEEE access</title><addtitle>Access</addtitle><description>In order to achieve a greener intelligent transport system (ITS), an efficient collaboration between vehicles is required to manage computation task processing with low latency. In this paper, we propose a collaborative edge computing scheme for vehicular Internet-of-things towards a greener ITS. The proposed scheme uses some vehicles as edge nodes, which are responsible for finding task processor nodes on behalf of a task requester node by considering the end-to-end task response time. The proposed scheme employs a two-stage approach where the first stage enables an efficient networking and computing architecture by forming vehicle clusters based on the edge architecture, and the second stage optimizes offloading tasks based on the architecture. We use realistic computer simulations to compare the proposed scheme with existing baselines, and show its superiority in terms of task offloading performance.</description><subject>Collaboration</subject><subject>Collaborative intelligence</subject><subject>Computation offloading</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Green ITS</subject><subject>Green products</subject><subject>Intelligent transportation systems</subject><subject>Microprocessors</subject><subject>Network latency</subject><subject>Nodes</subject><subject>Quality of service</subject><subject>Response time</subject><subject>Task analysis</subject><subject>Time factors</subject><subject>Vehicles</subject><subject>Vehicular Internet of Things</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1PwkAQhhujiQT5BVyaeAZnv7veSINIQuIB9LqZbrdYUljcFo3_3sUa4lxmMpn3nZknScYEpoSAfpjl-Xy9nlKgMKU6E4qRq2RAidQTJpi8_lffJqO23UGMLLaEGiSPuW8aLHzArv506Zt7r-2pwZDOy61Lc78_nrr6sE07_4WhbNNFcO7gQrrcrO-Smwqb1o3-8jB5fZpv8ufJ6mWxzGerieWKdxOdYSaF5VmFihYEFXfItSgkcoFANFpirSZauFLKUgGh8StWWsaolKIANkyWvW_pcWeOod5j-DYea_Pb8GFrMHS1bZypFBQZLQoAxXhlhQahkVKnS9AZAEav-97rGPzHybWd2flTOMTzDeURkNaS6jjF-ikbfNsGV122EjBn5qZnbs7MzR_zqBr3qto5d1HEExRnwH4Ac2p6fg</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Buda, Su</creator><creator>Guleng, Siri</creator><creator>Wu, Celimuge</creator><creator>Zhang, Jiefang</creator><creator>Yau, Kok-Lim Alvin</creator><creator>Ji, Yusheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8611-0109</orcidid><orcidid>https://orcid.org/0000-0003-4364-8491</orcidid><orcidid>https://orcid.org/0000-0003-3110-2782</orcidid><orcidid>https://orcid.org/0000-0001-6853-5878</orcidid><orcidid>https://orcid.org/0000-0002-8463-6035</orcidid></search><sort><creationdate>20200101</creationdate><title>Collaborative Vehicular Edge Computing towards Greener ITS</title><author>Buda, Su ; Guleng, Siri ; Wu, Celimuge ; Zhang, Jiefang ; Yau, Kok-Lim Alvin ; Ji, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-98a865c48fa72b1a74ea495b6a45a019ac1cc9195ed66d70121103dc332665b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Collaboration</topic><topic>Collaborative intelligence</topic><topic>Computation offloading</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Green ITS</topic><topic>Green products</topic><topic>Intelligent transportation systems</topic><topic>Microprocessors</topic><topic>Network latency</topic><topic>Nodes</topic><topic>Quality of service</topic><topic>Response time</topic><topic>Task analysis</topic><topic>Time factors</topic><topic>Vehicles</topic><topic>Vehicular Internet of Things</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buda, Su</creatorcontrib><creatorcontrib>Guleng, Siri</creatorcontrib><creatorcontrib>Wu, Celimuge</creatorcontrib><creatorcontrib>Zhang, Jiefang</creatorcontrib><creatorcontrib>Yau, Kok-Lim Alvin</creatorcontrib><creatorcontrib>Ji, Yusheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buda, Su</au><au>Guleng, Siri</au><au>Wu, Celimuge</au><au>Zhang, Jiefang</au><au>Yau, Kok-Lim Alvin</au><au>Ji, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Vehicular Edge Computing towards Greener ITS</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In order to achieve a greener intelligent transport system (ITS), an efficient collaboration between vehicles is required to manage computation task processing with low latency. In this paper, we propose a collaborative edge computing scheme for vehicular Internet-of-things towards a greener ITS. The proposed scheme uses some vehicles as edge nodes, which are responsible for finding task processor nodes on behalf of a task requester node by considering the end-to-end task response time. The proposed scheme employs a two-stage approach where the first stage enables an efficient networking and computing architecture by forming vehicle clusters based on the edge architecture, and the second stage optimizes offloading tasks based on the architecture. We use realistic computer simulations to compare the proposed scheme with existing baselines, and show its superiority in terms of task offloading performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2985731</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8611-0109</orcidid><orcidid>https://orcid.org/0000-0003-4364-8491</orcidid><orcidid>https://orcid.org/0000-0003-3110-2782</orcidid><orcidid>https://orcid.org/0000-0001-6853-5878</orcidid><orcidid>https://orcid.org/0000-0002-8463-6035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453699629
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Collaboration
Collaborative intelligence
Computation offloading
Delays
Edge computing
Green ITS
Green products
Intelligent transportation systems
Microprocessors
Network latency
Nodes
Quality of service
Response time
Task analysis
Time factors
Vehicles
Vehicular Internet of Things
title Collaborative Vehicular Edge Computing towards Greener ITS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Vehicular%20Edge%20Computing%20towards%20Greener%20ITS&rft.jtitle=IEEE%20access&rft.au=Buda,%20Su&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2985731&rft_dat=%3Cproquest_doaj_%3E2453699629%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699629&rft_id=info:pmid/&rft_ieee_id=9057430&rft_doaj_id=oai_doaj_org_article_f70b82bb00734fc59059a22e9d09800a&rfr_iscdi=true