On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation
Large-scale deployment of renewable energy sources in power systems is basically motivated by two universally recognized challenges: the need to reduce as far as possible the environmental impact of the massive increase of energy request and the dependency on fossil-fuel. Renewable energy sources ar...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Allella, F. Chiodo, E. Giannuzzi, G.M. Lauria, D. Mottola, F. |
description | Large-scale deployment of renewable energy sources in power systems is basically motivated by two universally recognized challenges: the need to reduce as far as possible the environmental impact of the massive increase of energy request and the dependency on fossil-fuel. Renewable energy sources are interfaced to the network by means of interfacing power converters which inherently exhibit zero inertia differently from the conventional synchronous generators. This matter jointly to the high level of time variability of the renewable resources involve dramatically frequency changes, recurrent frequency oscillations and high variability of frequency profile in general. The need of a fast estimation of time variability of the power system inertia arises at the aim of predicting critical conditions. Based on the analysis of some actual data of the Italian Transmission Network, in this paper the authors propose an autoregressive model which is able to describe the dynamic evolution of the power system inertia. More specifically, the inertia is modeled as the sum of a periodic component and a noise stochastic process distributed according a non-Gaussian model. The numerical results reported in the last part of the paper, demonstrating the efficiency and precision of estimation of inertia, allow justifying the assumptions of the above modeling. |
doi_str_mv | 10.1109/ACCESS.2020.2983877 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453699423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9049426</ieee_id><doaj_id>oai_doaj_org_article_4a470646286942bb921778e173ae373c</doaj_id><sourcerecordid>2453699423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d783802db4dfaaddb296c286bd672f76508f99f4130bbf2bf083808a0d2762de3</originalsourceid><addsrcrecordid>eNpNUcFOAyEU3BhNbKpf4IXE81YWKCzHZlNtkyYaq2cCy0O3aZcKmKZ_L3VNIxcek5lhYIrirsKTqsLyYdY08_V6QjDBEyJrWgtxUYxIxWVJp5Rf_puvi9sYNzivOkNTMSrsc1-uuh7QPKZup1PnezSLEWLcQZ-Qd-jFHyCg9TEm2EW07CGkTqNDlz7Rovv4RC_QQwqDMtNf8_GgzRbQU54G_Ka4cnob4fZvHxfvj_O3ZlGunp-WzWxVtgzXqbQih8fEGmad1tYaInlLam4sF8QJPsW1k9KximJjHDEOn_i1xpYITizQcbEcfK3XG7UP-UHhqLzu1C_gw4fSOX27BcU0E5gznu0lI8ZIUglRQyWoBipom73uB6998F_fEJPa-O_Q5_iKsPyVMstoZtGB1QYfYwB3vrXC6tSOGtpRp3bUXztZdTeoOgA4KyRm2ZPTH2sDipQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699423</pqid></control><display><type>article</type><title>On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Allella, F. ; Chiodo, E. ; Giannuzzi, G.M. ; Lauria, D. ; Mottola, F.</creator><creatorcontrib>Allella, F. ; Chiodo, E. ; Giannuzzi, G.M. ; Lauria, D. ; Mottola, F.</creatorcontrib><description>Large-scale deployment of renewable energy sources in power systems is basically motivated by two universally recognized challenges: the need to reduce as far as possible the environmental impact of the massive increase of energy request and the dependency on fossil-fuel. Renewable energy sources are interfaced to the network by means of interfacing power converters which inherently exhibit zero inertia differently from the conventional synchronous generators. This matter jointly to the high level of time variability of the renewable resources involve dramatically frequency changes, recurrent frequency oscillations and high variability of frequency profile in general. The need of a fast estimation of time variability of the power system inertia arises at the aim of predicting critical conditions. Based on the analysis of some actual data of the Italian Transmission Network, in this paper the authors propose an autoregressive model which is able to describe the dynamic evolution of the power system inertia. More specifically, the inertia is modeled as the sum of a periodic component and a noise stochastic process distributed according a non-Gaussian model. The numerical results reported in the last part of the paper, demonstrating the efficiency and precision of estimation of inertia, allow justifying the assumptions of the above modeling.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2983877</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alternative energy sources ; Auto-Regressive Models ; Autoregressive models ; Energy resources ; Environmental impact ; Estimation ; Frequency measurement ; Generators ; Inertia ; Numerical models ; Power converters ; Power system dynamics ; Power Systems ; Renewable Energy Sources ; Renewable resources ; Rotational Inertia ; Statistical Inference ; Stochastic process ; Stochastic processes ; Variability</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d783802db4dfaaddb296c286bd672f76508f99f4130bbf2bf083808a0d2762de3</citedby><cites>FETCH-LOGICAL-c408t-d783802db4dfaaddb296c286bd672f76508f99f4130bbf2bf083808a0d2762de3</cites><orcidid>0000-0001-9490-6484 ; 0000-0003-1138-5973 ; 0000-0002-8938-2599 ; 0000-0002-7813-7678 ; 0000-0003-0314-4483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9049426$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Allella, F.</creatorcontrib><creatorcontrib>Chiodo, E.</creatorcontrib><creatorcontrib>Giannuzzi, G.M.</creatorcontrib><creatorcontrib>Lauria, D.</creatorcontrib><creatorcontrib>Mottola, F.</creatorcontrib><title>On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Large-scale deployment of renewable energy sources in power systems is basically motivated by two universally recognized challenges: the need to reduce as far as possible the environmental impact of the massive increase of energy request and the dependency on fossil-fuel. Renewable energy sources are interfaced to the network by means of interfacing power converters which inherently exhibit zero inertia differently from the conventional synchronous generators. This matter jointly to the high level of time variability of the renewable resources involve dramatically frequency changes, recurrent frequency oscillations and high variability of frequency profile in general. The need of a fast estimation of time variability of the power system inertia arises at the aim of predicting critical conditions. Based on the analysis of some actual data of the Italian Transmission Network, in this paper the authors propose an autoregressive model which is able to describe the dynamic evolution of the power system inertia. More specifically, the inertia is modeled as the sum of a periodic component and a noise stochastic process distributed according a non-Gaussian model. The numerical results reported in the last part of the paper, demonstrating the efficiency and precision of estimation of inertia, allow justifying the assumptions of the above modeling.</description><subject>Alternative energy sources</subject><subject>Auto-Regressive Models</subject><subject>Autoregressive models</subject><subject>Energy resources</subject><subject>Environmental impact</subject><subject>Estimation</subject><subject>Frequency measurement</subject><subject>Generators</subject><subject>Inertia</subject><subject>Numerical models</subject><subject>Power converters</subject><subject>Power system dynamics</subject><subject>Power Systems</subject><subject>Renewable Energy Sources</subject><subject>Renewable resources</subject><subject>Rotational Inertia</subject><subject>Statistical Inference</subject><subject>Stochastic process</subject><subject>Stochastic processes</subject><subject>Variability</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFOAyEU3BhNbKpf4IXE81YWKCzHZlNtkyYaq2cCy0O3aZcKmKZ_L3VNIxcek5lhYIrirsKTqsLyYdY08_V6QjDBEyJrWgtxUYxIxWVJp5Rf_puvi9sYNzivOkNTMSrsc1-uuh7QPKZup1PnezSLEWLcQZ-Qd-jFHyCg9TEm2EW07CGkTqNDlz7Rovv4RC_QQwqDMtNf8_GgzRbQU54G_Ka4cnob4fZvHxfvj_O3ZlGunp-WzWxVtgzXqbQih8fEGmad1tYaInlLam4sF8QJPsW1k9KximJjHDEOn_i1xpYITizQcbEcfK3XG7UP-UHhqLzu1C_gw4fSOX27BcU0E5gznu0lI8ZIUglRQyWoBipom73uB6998F_fEJPa-O_Q5_iKsPyVMstoZtGB1QYfYwB3vrXC6tSOGtpRp3bUXztZdTeoOgA4KyRm2ZPTH2sDipQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Allella, F.</creator><creator>Chiodo, E.</creator><creator>Giannuzzi, G.M.</creator><creator>Lauria, D.</creator><creator>Mottola, F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9490-6484</orcidid><orcidid>https://orcid.org/0000-0003-1138-5973</orcidid><orcidid>https://orcid.org/0000-0002-8938-2599</orcidid><orcidid>https://orcid.org/0000-0002-7813-7678</orcidid><orcidid>https://orcid.org/0000-0003-0314-4483</orcidid></search><sort><creationdate>20200101</creationdate><title>On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation</title><author>Allella, F. ; Chiodo, E. ; Giannuzzi, G.M. ; Lauria, D. ; Mottola, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d783802db4dfaaddb296c286bd672f76508f99f4130bbf2bf083808a0d2762de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative energy sources</topic><topic>Auto-Regressive Models</topic><topic>Autoregressive models</topic><topic>Energy resources</topic><topic>Environmental impact</topic><topic>Estimation</topic><topic>Frequency measurement</topic><topic>Generators</topic><topic>Inertia</topic><topic>Numerical models</topic><topic>Power converters</topic><topic>Power system dynamics</topic><topic>Power Systems</topic><topic>Renewable Energy Sources</topic><topic>Renewable resources</topic><topic>Rotational Inertia</topic><topic>Statistical Inference</topic><topic>Stochastic process</topic><topic>Stochastic processes</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allella, F.</creatorcontrib><creatorcontrib>Chiodo, E.</creatorcontrib><creatorcontrib>Giannuzzi, G.M.</creatorcontrib><creatorcontrib>Lauria, D.</creatorcontrib><creatorcontrib>Mottola, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allella, F.</au><au>Chiodo, E.</au><au>Giannuzzi, G.M.</au><au>Lauria, D.</au><au>Mottola, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Large-scale deployment of renewable energy sources in power systems is basically motivated by two universally recognized challenges: the need to reduce as far as possible the environmental impact of the massive increase of energy request and the dependency on fossil-fuel. Renewable energy sources are interfaced to the network by means of interfacing power converters which inherently exhibit zero inertia differently from the conventional synchronous generators. This matter jointly to the high level of time variability of the renewable resources involve dramatically frequency changes, recurrent frequency oscillations and high variability of frequency profile in general. The need of a fast estimation of time variability of the power system inertia arises at the aim of predicting critical conditions. Based on the analysis of some actual data of the Italian Transmission Network, in this paper the authors propose an autoregressive model which is able to describe the dynamic evolution of the power system inertia. More specifically, the inertia is modeled as the sum of a periodic component and a noise stochastic process distributed according a non-Gaussian model. The numerical results reported in the last part of the paper, demonstrating the efficiency and precision of estimation of inertia, allow justifying the assumptions of the above modeling.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2983877</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9490-6484</orcidid><orcidid>https://orcid.org/0000-0003-1138-5973</orcidid><orcidid>https://orcid.org/0000-0002-8938-2599</orcidid><orcidid>https://orcid.org/0000-0002-7813-7678</orcidid><orcidid>https://orcid.org/0000-0003-0314-4483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453699423 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alternative energy sources Auto-Regressive Models Autoregressive models Energy resources Environmental impact Estimation Frequency measurement Generators Inertia Numerical models Power converters Power system dynamics Power Systems Renewable Energy Sources Renewable resources Rotational Inertia Statistical Inference Stochastic process Stochastic processes Variability |
title | On-Line Estimation Assessment of Power Systems Inertia with High Penetration of Renewable Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-Line%20Estimation%20Assessment%20of%20Power%20Systems%20Inertia%20with%20High%20Penetration%20of%20Renewable%20Generation&rft.jtitle=IEEE%20access&rft.au=Allella,%20F.&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2983877&rft_dat=%3Cproquest_doaj_%3E2453699423%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699423&rft_id=info:pmid/&rft_ieee_id=9049426&rft_doaj_id=oai_doaj_org_article_4a470646286942bb921778e173ae373c&rfr_iscdi=true |