Sequence-dropout Block for Reducing Overfitting Problem in Image Classification
Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Qian, Ledan Hu, Libing Zhao, Li Wang, Tao Jiang, Runhua |
description | Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods. |
doi_str_mv | 10.1109/ACCESS.2020.2983774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453699404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9049145</ieee_id><doaj_id>oai_doaj_org_article_ad98b6871fe0438d818d996259f7a6c1</doaj_id><sourcerecordid>2453699404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqf4CLwuetybZZJMc6-JHQahYPYc0mZTU7aZmt4L_3tQVcS4zPOa9-XgIXRE8IwSrm3nT3K1WM4opnlElKyHYCZpQUquy4lV9-q8-R5d9v8U5ZIa4mKDlCj4O0FkoXYr7eBiK2zba98LHVLyAO9jQbYrlJyQfhuFYP6e4bmFXhK5Y7MwGiqY1fR98sGYIsbtAZ960PVz-5il6u797bR7Lp-XDopk_lZZhOZSGMGwcA7LmpOIgmKFeEOHAWyUxx4bXFK8ptkw477ivLLcci3wbWI_BV1O0GHVdNFu9T2Fn0peOJugfIKaNNmkItgVtnJLrWgriAbNKOkmkU6qmXHlhakuy1vWotU8xP6Mf9DYeUpfX15TlrynFMnGKqrHLptj3CfzfVIL10Qg9GqGPRuhfIzLramQFAPhjKMwUydLfGF-Dtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699404</pqid></control><display><type>article</type><title>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qian, Ledan ; Hu, Libing ; Zhao, Li ; Wang, Tao ; Jiang, Runhua</creator><creatorcontrib>Qian, Ledan ; Hu, Libing ; Zhao, Li ; Wang, Tao ; Jiang, Runhua</creatorcontrib><description>Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2983774</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Channels ; Computer architecture ; Computer vision ; Convolution ; Convolutional networks ; Image classification ; Neural networks ; Overfitting ; Sequence-dropout ; Task analysis ; Training ; Training data</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</citedby><cites>FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</cites><orcidid>0000-0002-0202-0174 ; 0000-0002-7170-5441 ; 0000-0003-2338-6519 ; 0000-0001-5787-2705 ; 0000-0003-2402-8684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9049145$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Qian, Ledan</creatorcontrib><creatorcontrib>Hu, Libing</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Jiang, Runhua</creatorcontrib><title>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.</description><subject>Artificial neural networks</subject><subject>Channels</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Convolutional networks</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Overfitting</subject><subject>Sequence-dropout</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJgqf4CLwuetybZZJMc6-JHQahYPYc0mZTU7aZmt4L_3tQVcS4zPOa9-XgIXRE8IwSrm3nT3K1WM4opnlElKyHYCZpQUquy4lV9-q8-R5d9v8U5ZIa4mKDlCj4O0FkoXYr7eBiK2zba98LHVLyAO9jQbYrlJyQfhuFYP6e4bmFXhK5Y7MwGiqY1fR98sGYIsbtAZ960PVz-5il6u797bR7Lp-XDopk_lZZhOZSGMGwcA7LmpOIgmKFeEOHAWyUxx4bXFK8ptkw477ivLLcci3wbWI_BV1O0GHVdNFu9T2Fn0peOJugfIKaNNmkItgVtnJLrWgriAbNKOkmkU6qmXHlhakuy1vWotU8xP6Mf9DYeUpfX15TlrynFMnGKqrHLptj3CfzfVIL10Qg9GqGPRuhfIzLramQFAPhjKMwUydLfGF-Dtw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Qian, Ledan</creator><creator>Hu, Libing</creator><creator>Zhao, Li</creator><creator>Wang, Tao</creator><creator>Jiang, Runhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0202-0174</orcidid><orcidid>https://orcid.org/0000-0002-7170-5441</orcidid><orcidid>https://orcid.org/0000-0003-2338-6519</orcidid><orcidid>https://orcid.org/0000-0001-5787-2705</orcidid><orcidid>https://orcid.org/0000-0003-2402-8684</orcidid></search><sort><creationdate>20200101</creationdate><title>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</title><author>Qian, Ledan ; Hu, Libing ; Zhao, Li ; Wang, Tao ; Jiang, Runhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Channels</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Convolutional networks</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Overfitting</topic><topic>Sequence-dropout</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Ledan</creatorcontrib><creatorcontrib>Hu, Libing</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Jiang, Runhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Ledan</au><au>Hu, Libing</au><au>Zhao, Li</au><au>Wang, Tao</au><au>Jiang, Runhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2983774</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0202-0174</orcidid><orcidid>https://orcid.org/0000-0002-7170-5441</orcidid><orcidid>https://orcid.org/0000-0003-2338-6519</orcidid><orcidid>https://orcid.org/0000-0001-5787-2705</orcidid><orcidid>https://orcid.org/0000-0003-2402-8684</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453699404 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Channels Computer architecture Computer vision Convolution Convolutional networks Image classification Neural networks Overfitting Sequence-dropout Task analysis Training Training data |
title | Sequence-dropout Block for Reducing Overfitting Problem in Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-dropout%20Block%20for%20Reducing%20Overfitting%20Problem%20in%20Image%20Classification&rft.jtitle=IEEE%20access&rft.au=Qian,%20Ledan&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2983774&rft_dat=%3Cproquest_doaj_%3E2453699404%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699404&rft_id=info:pmid/&rft_ieee_id=9049145&rft_doaj_id=oai_doaj_org_article_ad98b6871fe0438d818d996259f7a6c1&rfr_iscdi=true |