Sequence-dropout Block for Reducing Overfitting Problem in Image Classification

Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Qian, Ledan, Hu, Libing, Zhao, Li, Wang, Tao, Jiang, Runhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Qian, Ledan
Hu, Libing
Zhao, Li
Wang, Tao
Jiang, Runhua
description Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.
doi_str_mv 10.1109/ACCESS.2020.2983774
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2453699404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9049145</ieee_id><doaj_id>oai_doaj_org_article_ad98b6871fe0438d818d996259f7a6c1</doaj_id><sourcerecordid>2453699404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqf4CLwuetybZZJMc6-JHQahYPYc0mZTU7aZmt4L_3tQVcS4zPOa9-XgIXRE8IwSrm3nT3K1WM4opnlElKyHYCZpQUquy4lV9-q8-R5d9v8U5ZIa4mKDlCj4O0FkoXYr7eBiK2zba98LHVLyAO9jQbYrlJyQfhuFYP6e4bmFXhK5Y7MwGiqY1fR98sGYIsbtAZ960PVz-5il6u797bR7Lp-XDopk_lZZhOZSGMGwcA7LmpOIgmKFeEOHAWyUxx4bXFK8ptkw477ivLLcci3wbWI_BV1O0GHVdNFu9T2Fn0peOJugfIKaNNmkItgVtnJLrWgriAbNKOkmkU6qmXHlhakuy1vWotU8xP6Mf9DYeUpfX15TlrynFMnGKqrHLptj3CfzfVIL10Qg9GqGPRuhfIzLramQFAPhjKMwUydLfGF-Dtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699404</pqid></control><display><type>article</type><title>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qian, Ledan ; Hu, Libing ; Zhao, Li ; Wang, Tao ; Jiang, Runhua</creator><creatorcontrib>Qian, Ledan ; Hu, Libing ; Zhao, Li ; Wang, Tao ; Jiang, Runhua</creatorcontrib><description>Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2983774</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Channels ; Computer architecture ; Computer vision ; Convolution ; Convolutional networks ; Image classification ; Neural networks ; Overfitting ; Sequence-dropout ; Task analysis ; Training ; Training data</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</citedby><cites>FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</cites><orcidid>0000-0002-0202-0174 ; 0000-0002-7170-5441 ; 0000-0003-2338-6519 ; 0000-0001-5787-2705 ; 0000-0003-2402-8684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9049145$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Qian, Ledan</creatorcontrib><creatorcontrib>Hu, Libing</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Jiang, Runhua</creatorcontrib><title>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.</description><subject>Artificial neural networks</subject><subject>Channels</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Convolutional networks</subject><subject>Image classification</subject><subject>Neural networks</subject><subject>Overfitting</subject><subject>Sequence-dropout</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaJgqf4CLwuetybZZJMc6-JHQahYPYc0mZTU7aZmt4L_3tQVcS4zPOa9-XgIXRE8IwSrm3nT3K1WM4opnlElKyHYCZpQUquy4lV9-q8-R5d9v8U5ZIa4mKDlCj4O0FkoXYr7eBiK2zba98LHVLyAO9jQbYrlJyQfhuFYP6e4bmFXhK5Y7MwGiqY1fR98sGYIsbtAZ960PVz-5il6u797bR7Lp-XDopk_lZZhOZSGMGwcA7LmpOIgmKFeEOHAWyUxx4bXFK8ptkw477ivLLcci3wbWI_BV1O0GHVdNFu9T2Fn0peOJugfIKaNNmkItgVtnJLrWgriAbNKOkmkU6qmXHlhakuy1vWotU8xP6Mf9DYeUpfX15TlrynFMnGKqrHLptj3CfzfVIL10Qg9GqGPRuhfIzLramQFAPhjKMwUydLfGF-Dtw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Qian, Ledan</creator><creator>Hu, Libing</creator><creator>Zhao, Li</creator><creator>Wang, Tao</creator><creator>Jiang, Runhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0202-0174</orcidid><orcidid>https://orcid.org/0000-0002-7170-5441</orcidid><orcidid>https://orcid.org/0000-0003-2338-6519</orcidid><orcidid>https://orcid.org/0000-0001-5787-2705</orcidid><orcidid>https://orcid.org/0000-0003-2402-8684</orcidid></search><sort><creationdate>20200101</creationdate><title>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</title><author>Qian, Ledan ; Hu, Libing ; Zhao, Li ; Wang, Tao ; Jiang, Runhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a140ad4e1b5135e74a2f717defc98050a5620b20c47dfd5f3c5c507377ecf0ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Channels</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Convolutional networks</topic><topic>Image classification</topic><topic>Neural networks</topic><topic>Overfitting</topic><topic>Sequence-dropout</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Ledan</creatorcontrib><creatorcontrib>Hu, Libing</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Jiang, Runhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Ledan</au><au>Hu, Libing</au><au>Zhao, Li</au><au>Wang, Tao</au><au>Jiang, Runhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequence-dropout Block for Reducing Overfitting Problem in Image Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Overfitting is a common problem for computer vision applications It is a problem that when training convolution neural networks and is caused by lack of training data or network complexity. The novel sequence-dropout (SD) method is proposed in this paper to alleviate the problem of overfitting when training networks. The SD method works by dropping out units (channels of feature) from the network in a sequence, replacing the traditional operation of random omitting. Sophisticated aggregation strategies are used to obtain the global information of feature channels, and channel-wise weights are produced by gating mechanism. The SD method then selectively drops out the feature channels according to the channelwise weights that represent the importance degree of each channel. The proposed SD block can be plugged into state-of-the-art backbone CNN models such as VGGNet and ResNet. The SD block is then evaluated on these models, demonstrating consistent performance gains over the baseline model on widely-used benchmark image classification datasets including MNIST, CIFAR-10, CIFAR-100, and ImageNet2012. Experimental results demonstrate that the superior performance of the SD block compared to other modern methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2983774</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0202-0174</orcidid><orcidid>https://orcid.org/0000-0002-7170-5441</orcidid><orcidid>https://orcid.org/0000-0003-2338-6519</orcidid><orcidid>https://orcid.org/0000-0001-5787-2705</orcidid><orcidid>https://orcid.org/0000-0003-2402-8684</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453699404
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Channels
Computer architecture
Computer vision
Convolution
Convolutional networks
Image classification
Neural networks
Overfitting
Sequence-dropout
Task analysis
Training
Training data
title Sequence-dropout Block for Reducing Overfitting Problem in Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequence-dropout%20Block%20for%20Reducing%20Overfitting%20Problem%20in%20Image%20Classification&rft.jtitle=IEEE%20access&rft.au=Qian,%20Ledan&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2983774&rft_dat=%3Cproquest_doaj_%3E2453699404%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699404&rft_id=info:pmid/&rft_ieee_id=9049145&rft_doaj_id=oai_doaj_org_article_ad98b6871fe0438d818d996259f7a6c1&rfr_iscdi=true