Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target

This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Zhou, Kai-Bo, Wu, Xiao-Kang, Ge, Ming-Feng, Liang, Chang-Duo, Hu, Bing-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Zhou, Kai-Bo
Wu, Xiao-Kang
Ge, Ming-Feng
Liang, Chang-Duo
Hu, Bing-Liang
description This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.
doi_str_mv 10.1109/ACCESS.2020.2980894
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453699083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9036939</ieee_id><doaj_id>oai_doaj_org_article_95494e66ec0f48e28ba3241de213c4cb</doaj_id><sourcerecordid>2453699083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgj4BVwice7IV9vkOFUbIME4rPcoTZ2R0TUjzUD8ezKKEDkktuX3sZU3y24InhGC5d28rhfr9YxiimdUCiwkP8kuKCllzgpWnv6Lz7PrcdzidEQqFdVF9r6CQ9B9rju9j-4D0NINLkIe3S7FPux0dH5ATdDmzQ0bVPshBt8jb9HzoY9u3wNa-eHV937wO2fQfANDHNGni69ojpqEyT90-DpqGx02EK-yM6v7Ea5_38usWS6a-iF_erl_rOdPueFYxJxJ2UrLRVcBBmiN5QRIWwnZpdyCpoWlxnYYiC1YVZp0d23VCSM1w4Vhl9njhO283qp9cLu0hfLaqZ-CDxulQ3SmByULLjmUJRicBgIVrWaUkw4oYYabNrFuJ9Y--PcDjFFt_SEMaXtFefpWKbFgqYtNXSb4cQxg_6YSrI5OqckpdXRK_TqVVDeTygHAn0LiRGWSfQMVKpFd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699083</pqid></control><display><type>article</type><title>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Zhou, Kai-Bo ; Wu, Xiao-Kang ; Ge, Ming-Feng ; Liang, Chang-Duo ; Hu, Bing-Liang</creator><creatorcontrib>Zhou, Kai-Bo ; Wu, Xiao-Kang ; Ge, Ming-Feng ; Liang, Chang-Duo ; Hu, Bing-Liang</creatorcontrib><description>This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2980894</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Algorithms ; Convergence ; distributed controller-estimator algorithm (DCEA) ; Feedback control ; Heuristic algorithms ; Kinematics ; leader-following formation tracking problem (FTP) ; Multiple nonholonomic agent system (MNAS) ; Neural networks ; Neurons ; radial basis function (RBF) neural network ; Stability ; Stability analysis ; Target tracking ; Tracking control ; Tracking problem</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</citedby><cites>FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</cites><orcidid>0000-0002-5354-5990 ; 0000-0003-3216-5013 ; 0000-0002-9948-883X ; 0000-0002-6828-0147 ; 0000-0003-0055-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9036939$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Kai-Bo</creatorcontrib><creatorcontrib>Wu, Xiao-Kang</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Liang, Chang-Duo</creatorcontrib><creatorcontrib>Hu, Bing-Liang</creatorcontrib><title>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>distributed controller-estimator algorithm (DCEA)</subject><subject>Feedback control</subject><subject>Heuristic algorithms</subject><subject>Kinematics</subject><subject>leader-following formation tracking problem (FTP)</subject><subject>Multiple nonholonomic agent system (MNAS)</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>radial basis function (RBF) neural network</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Target tracking</subject><subject>Tracking control</subject><subject>Tracking problem</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgj4BVwice7IV9vkOFUbIME4rPcoTZ2R0TUjzUD8ezKKEDkktuX3sZU3y24InhGC5d28rhfr9YxiimdUCiwkP8kuKCllzgpWnv6Lz7PrcdzidEQqFdVF9r6CQ9B9rju9j-4D0NINLkIe3S7FPux0dH5ATdDmzQ0bVPshBt8jb9HzoY9u3wNa-eHV937wO2fQfANDHNGni69ojpqEyT90-DpqGx02EK-yM6v7Ea5_38usWS6a-iF_erl_rOdPueFYxJxJ2UrLRVcBBmiN5QRIWwnZpdyCpoWlxnYYiC1YVZp0d23VCSM1w4Vhl9njhO283qp9cLu0hfLaqZ-CDxulQ3SmByULLjmUJRicBgIVrWaUkw4oYYabNrFuJ9Y--PcDjFFt_SEMaXtFefpWKbFgqYtNXSb4cQxg_6YSrI5OqckpdXRK_TqVVDeTygHAn0LiRGWSfQMVKpFd</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhou, Kai-Bo</creator><creator>Wu, Xiao-Kang</creator><creator>Ge, Ming-Feng</creator><creator>Liang, Chang-Duo</creator><creator>Hu, Bing-Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5354-5990</orcidid><orcidid>https://orcid.org/0000-0003-3216-5013</orcidid><orcidid>https://orcid.org/0000-0002-9948-883X</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0003-0055-3193</orcidid></search><sort><creationdate>20200101</creationdate><title>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</title><author>Zhou, Kai-Bo ; Wu, Xiao-Kang ; Ge, Ming-Feng ; Liang, Chang-Duo ; Hu, Bing-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>distributed controller-estimator algorithm (DCEA)</topic><topic>Feedback control</topic><topic>Heuristic algorithms</topic><topic>Kinematics</topic><topic>leader-following formation tracking problem (FTP)</topic><topic>Multiple nonholonomic agent system (MNAS)</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>radial basis function (RBF) neural network</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Target tracking</topic><topic>Tracking control</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kai-Bo</creatorcontrib><creatorcontrib>Wu, Xiao-Kang</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Liang, Chang-Duo</creatorcontrib><creatorcontrib>Hu, Bing-Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kai-Bo</au><au>Wu, Xiao-Kang</au><au>Ge, Ming-Feng</au><au>Liang, Chang-Duo</au><au>Hu, Bing-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2980894</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5354-5990</orcidid><orcidid>https://orcid.org/0000-0003-3216-5013</orcidid><orcidid>https://orcid.org/0000-0002-9948-883X</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0003-0055-3193</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453699083
source Electronic Journals Library; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals
subjects Adaptive control
Algorithms
Convergence
distributed controller-estimator algorithm (DCEA)
Feedback control
Heuristic algorithms
Kinematics
leader-following formation tracking problem (FTP)
Multiple nonholonomic agent system (MNAS)
Neural networks
Neurons
radial basis function (RBF) neural network
Stability
Stability analysis
Target tracking
Tracking control
Tracking problem
title Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-adaptive%20Finite-time%20Formation%20Tracking%20Control%20of%20Multiple%20Nonholonomic%20Agents%20with%20A%20Time-varying%20Target&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Kai-Bo&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2980894&rft_dat=%3Cproquest_cross%3E2453699083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699083&rft_id=info:pmid/&rft_ieee_id=9036939&rft_doaj_id=oai_doaj_org_article_95494e66ec0f48e28ba3241de213c4cb&rfr_iscdi=true