Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target
This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhou, Kai-Bo Wu, Xiao-Kang Ge, Ming-Feng Liang, Chang-Duo Hu, Bing-Liang |
description | This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA. |
doi_str_mv | 10.1109/ACCESS.2020.2980894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453699083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9036939</ieee_id><doaj_id>oai_doaj_org_article_95494e66ec0f48e28ba3241de213c4cb</doaj_id><sourcerecordid>2453699083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</originalsourceid><addsrcrecordid>eNpNkU1PwzAMhisEEgj4BVwice7IV9vkOFUbIME4rPcoTZ2R0TUjzUD8ezKKEDkktuX3sZU3y24InhGC5d28rhfr9YxiimdUCiwkP8kuKCllzgpWnv6Lz7PrcdzidEQqFdVF9r6CQ9B9rju9j-4D0NINLkIe3S7FPux0dH5ATdDmzQ0bVPshBt8jb9HzoY9u3wNa-eHV937wO2fQfANDHNGni69ojpqEyT90-DpqGx02EK-yM6v7Ea5_38usWS6a-iF_erl_rOdPueFYxJxJ2UrLRVcBBmiN5QRIWwnZpdyCpoWlxnYYiC1YVZp0d23VCSM1w4Vhl9njhO283qp9cLu0hfLaqZ-CDxulQ3SmByULLjmUJRicBgIVrWaUkw4oYYabNrFuJ9Y--PcDjFFt_SEMaXtFefpWKbFgqYtNXSb4cQxg_6YSrI5OqckpdXRK_TqVVDeTygHAn0LiRGWSfQMVKpFd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699083</pqid></control><display><type>article</type><title>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><creator>Zhou, Kai-Bo ; Wu, Xiao-Kang ; Ge, Ming-Feng ; Liang, Chang-Duo ; Hu, Bing-Liang</creator><creatorcontrib>Zhou, Kai-Bo ; Wu, Xiao-Kang ; Ge, Ming-Feng ; Liang, Chang-Duo ; Hu, Bing-Liang</creatorcontrib><description>This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2980894</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Algorithms ; Convergence ; distributed controller-estimator algorithm (DCEA) ; Feedback control ; Heuristic algorithms ; Kinematics ; leader-following formation tracking problem (FTP) ; Multiple nonholonomic agent system (MNAS) ; Neural networks ; Neurons ; radial basis function (RBF) neural network ; Stability ; Stability analysis ; Target tracking ; Tracking control ; Tracking problem</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</citedby><cites>FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</cites><orcidid>0000-0002-5354-5990 ; 0000-0003-3216-5013 ; 0000-0002-9948-883X ; 0000-0002-6828-0147 ; 0000-0003-0055-3193</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9036939$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhou, Kai-Bo</creatorcontrib><creatorcontrib>Wu, Xiao-Kang</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Liang, Chang-Duo</creatorcontrib><creatorcontrib>Hu, Bing-Liang</creatorcontrib><title>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>distributed controller-estimator algorithm (DCEA)</subject><subject>Feedback control</subject><subject>Heuristic algorithms</subject><subject>Kinematics</subject><subject>leader-following formation tracking problem (FTP)</subject><subject>Multiple nonholonomic agent system (MNAS)</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>radial basis function (RBF) neural network</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Target tracking</subject><subject>Tracking control</subject><subject>Tracking problem</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1PwzAMhisEEgj4BVwice7IV9vkOFUbIME4rPcoTZ2R0TUjzUD8ezKKEDkktuX3sZU3y24InhGC5d28rhfr9YxiimdUCiwkP8kuKCllzgpWnv6Lz7PrcdzidEQqFdVF9r6CQ9B9rju9j-4D0NINLkIe3S7FPux0dH5ATdDmzQ0bVPshBt8jb9HzoY9u3wNa-eHV937wO2fQfANDHNGni69ojpqEyT90-DpqGx02EK-yM6v7Ea5_38usWS6a-iF_erl_rOdPueFYxJxJ2UrLRVcBBmiN5QRIWwnZpdyCpoWlxnYYiC1YVZp0d23VCSM1w4Vhl9njhO283qp9cLu0hfLaqZ-CDxulQ3SmByULLjmUJRicBgIVrWaUkw4oYYabNrFuJ9Y--PcDjFFt_SEMaXtFefpWKbFgqYtNXSb4cQxg_6YSrI5OqckpdXRK_TqVVDeTygHAn0LiRGWSfQMVKpFd</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhou, Kai-Bo</creator><creator>Wu, Xiao-Kang</creator><creator>Ge, Ming-Feng</creator><creator>Liang, Chang-Duo</creator><creator>Hu, Bing-Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5354-5990</orcidid><orcidid>https://orcid.org/0000-0003-3216-5013</orcidid><orcidid>https://orcid.org/0000-0002-9948-883X</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0003-0055-3193</orcidid></search><sort><creationdate>20200101</creationdate><title>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</title><author>Zhou, Kai-Bo ; Wu, Xiao-Kang ; Ge, Ming-Feng ; Liang, Chang-Duo ; Hu, Bing-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-399b9f48d7e0eebcf41e1b789de0efea25f2cfd0e1f5376cf53db7d8c9a305c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>distributed controller-estimator algorithm (DCEA)</topic><topic>Feedback control</topic><topic>Heuristic algorithms</topic><topic>Kinematics</topic><topic>leader-following formation tracking problem (FTP)</topic><topic>Multiple nonholonomic agent system (MNAS)</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>radial basis function (RBF) neural network</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Target tracking</topic><topic>Tracking control</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kai-Bo</creatorcontrib><creatorcontrib>Wu, Xiao-Kang</creatorcontrib><creatorcontrib>Ge, Ming-Feng</creatorcontrib><creatorcontrib>Liang, Chang-Duo</creatorcontrib><creatorcontrib>Hu, Bing-Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kai-Bo</au><au>Wu, Xiao-Kang</au><au>Ge, Ming-Feng</au><au>Liang, Chang-Duo</au><au>Hu, Bing-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper investigates the leader-following formation tracking problem (FTP) for multiple nonholonomic agent systems (MNASs) in the presence of external disturbances and parametric uncertainties, where both the kinematics and dynamics of the agents are taken into consideration. A novel finite-time distributed controller-estimator algorithm (DCEA) is designed to handle such a challenging problem. Based on Lyapunov stability method, the sufficient conditions for finite-time stability of the closed-loop system are derived. Finally, the simulation results are presented to demonstrate the effectiveness and the robustness of the proposed DCEA.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2980894</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5354-5990</orcidid><orcidid>https://orcid.org/0000-0003-3216-5013</orcidid><orcidid>https://orcid.org/0000-0002-9948-883X</orcidid><orcidid>https://orcid.org/0000-0002-6828-0147</orcidid><orcidid>https://orcid.org/0000-0003-0055-3193</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020-01, Vol.8, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453699083 |
source | Electronic Journals Library; DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals |
subjects | Adaptive control Algorithms Convergence distributed controller-estimator algorithm (DCEA) Feedback control Heuristic algorithms Kinematics leader-following formation tracking problem (FTP) Multiple nonholonomic agent system (MNAS) Neural networks Neurons radial basis function (RBF) neural network Stability Stability analysis Target tracking Tracking control Tracking problem |
title | Neural-adaptive Finite-time Formation Tracking Control of Multiple Nonholonomic Agents with A Time-varying Target |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-adaptive%20Finite-time%20Formation%20Tracking%20Control%20of%20Multiple%20Nonholonomic%20Agents%20with%20A%20Time-varying%20Target&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Kai-Bo&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2980894&rft_dat=%3Cproquest_cross%3E2453699083%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699083&rft_id=info:pmid/&rft_ieee_id=9036939&rft_doaj_id=oai_doaj_org_article_95494e66ec0f48e28ba3241de213c4cb&rfr_iscdi=true |