Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System
The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with co...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.61131-61137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61137 |
---|---|
container_issue | |
container_start_page | 61131 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Yongguang Gao, Xiaohui |
description | The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design. |
doi_str_mv | 10.1109/ACCESS.2020.2977726 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2453690280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025215</ieee_id><doaj_id>oai_doaj_org_article_3a2fc20e881840fd90ebf84b0b27184b</doaj_id><sourcerecordid>2453690280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ac4abdee58b93f324af2dbf111a7ec6f27739c72aea2ca04ee392cc4fd64a4883</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhpfSQEKaJ8jF0EMPZV1ppF1pj2Zx20BKoU7OQtKOjIy9cqU1JW-fcTdNe6wuGg3_N5qZv6puOVtyzrpPq75fbzZLYMCW0CmloH1TXQFvu1o0on37T3xZ3ZSyY3Q0pRp1Vbn1iHmLU_SLb9bnVHw6UvwDjxkLjpOdYhoXKSw2uA_1Kua6T2kfxy1JfDzm5ElBrz4dzkRJ-UNZ_JFsnsqEh3fVRbD7gjcv93X1-Hn90H-t779_uetX97UXjZ5q66V1A2KjXSeCAGkDDC5wzq1C3wZQSnRegUUL3jKJKDrwXoahlVZqLa6ru7nukOzOHHM82Pxkko3mdyLlrbGZBt2jERaCB4Zacy1ZGDqGLmjpmANFGUe13s-1aMKfJyyT2aVTHql9A5IW2THQjFRiVp0XVzKG1185M2dvzOyNOXtjXrwh6uNM_UKXQvERR4-vJHnTgJJccMY4cFLr_1f3cTasT6dxIvR2RiPiX4Rab4A34hm6Aay2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453690280</pqid></control><display><type>article</type><title>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB Electronic Journals Library</source><creator>Liu, Yongguang ; Gao, Xiaohui</creator><creatorcontrib>Liu, Yongguang ; Gao, Xiaohui</creatorcontrib><description>The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2977726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Atmospheric modeling ; Cavity resonators ; Compressible fluids ; compressor ; Computational modeling ; Computer Science ; Computer Science, Information Systems ; Cooling ; Cooling systems ; Curve fitting ; Design optimization ; Energetic macroscopic representation ; Engineering ; Engineering, Electrical & Electronic ; Heat exchange ; Heating systems ; Mathematical model ; Reciprocating compressors ; Representations ; Science & Technology ; self-air-cooling ; Spirals ; Subsystems ; Technology ; Telecommunications ; Thermodynamic models</subject><ispartof>IEEE access, 2020, Vol.8, p.61131-61137</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000527413100121</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c358t-ac4abdee58b93f324af2dbf111a7ec6f27739c72aea2ca04ee392cc4fd64a4883</cites><orcidid>0000-0002-6108-4215 ; 0000-0002-1356-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025215$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Liu, Yongguang</creatorcontrib><creatorcontrib>Gao, Xiaohui</creatorcontrib><title>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.</description><subject>Atmospheric modeling</subject><subject>Cavity resonators</subject><subject>Compressible fluids</subject><subject>compressor</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Curve fitting</subject><subject>Design optimization</subject><subject>Energetic macroscopic representation</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Heat exchange</subject><subject>Heating systems</subject><subject>Mathematical model</subject><subject>Reciprocating compressors</subject><subject>Representations</subject><subject>Science & Technology</subject><subject>self-air-cooling</subject><subject>Spirals</subject><subject>Subsystems</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Thermodynamic models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFqGzEQhpfSQEKaJ8jF0EMPZV1ppF1pj2Zx20BKoU7OQtKOjIy9cqU1JW-fcTdNe6wuGg3_N5qZv6puOVtyzrpPq75fbzZLYMCW0CmloH1TXQFvu1o0on37T3xZ3ZSyY3Q0pRp1Vbn1iHmLU_SLb9bnVHw6UvwDjxkLjpOdYhoXKSw2uA_1Kua6T2kfxy1JfDzm5ElBrz4dzkRJ-UNZ_JFsnsqEh3fVRbD7gjcv93X1-Hn90H-t779_uetX97UXjZ5q66V1A2KjXSeCAGkDDC5wzq1C3wZQSnRegUUL3jKJKDrwXoahlVZqLa6ru7nukOzOHHM82Pxkko3mdyLlrbGZBt2jERaCB4Zacy1ZGDqGLmjpmANFGUe13s-1aMKfJyyT2aVTHql9A5IW2THQjFRiVp0XVzKG1185M2dvzOyNOXtjXrwh6uNM_UKXQvERR4-vJHnTgJJccMY4cFLr_1f3cTasT6dxIvR2RiPiX4Rab4A34hm6Aay2</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yongguang</creator><creator>Gao, Xiaohui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6108-4215</orcidid><orcidid>https://orcid.org/0000-0002-1356-4134</orcidid></search><sort><creationdate>2020</creationdate><title>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</title><author>Liu, Yongguang ; Gao, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ac4abdee58b93f324af2dbf111a7ec6f27739c72aea2ca04ee392cc4fd64a4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric modeling</topic><topic>Cavity resonators</topic><topic>Compressible fluids</topic><topic>compressor</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Curve fitting</topic><topic>Design optimization</topic><topic>Energetic macroscopic representation</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Heat exchange</topic><topic>Heating systems</topic><topic>Mathematical model</topic><topic>Reciprocating compressors</topic><topic>Representations</topic><topic>Science & Technology</topic><topic>self-air-cooling</topic><topic>Spirals</topic><topic>Subsystems</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Thermodynamic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yongguang</creatorcontrib><creatorcontrib>Gao, Xiaohui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yongguang</au><au>Gao, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>61131</spage><epage>61137</epage><pages>61131-61137</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2977726</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6108-4215</orcidid><orcidid>https://orcid.org/0000-0002-1356-4134</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.61131-61137 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453690280 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB Electronic Journals Library |
subjects | Atmospheric modeling Cavity resonators Compressible fluids compressor Computational modeling Computer Science Computer Science, Information Systems Cooling Cooling systems Curve fitting Design optimization Energetic macroscopic representation Engineering Engineering, Electrical & Electronic Heat exchange Heating systems Mathematical model Reciprocating compressors Representations Science & Technology self-air-cooling Spirals Subsystems Technology Telecommunications Thermodynamic models |
title | Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20Macroscopic%20Representation%20of%20Self-Air-Cooling%20Reciprocating%20Compressor's%20Cooling%20System&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yongguang&rft.date=2020&rft.volume=8&rft.spage=61131&rft.epage=61137&rft.pages=61131-61137&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2977726&rft_dat=%3Cproquest_webof%3E2453690280%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453690280&rft_id=info:pmid/&rft_ieee_id=9025215&rft_doaj_id=oai_doaj_org_article_3a2fc20e881840fd90ebf84b0b27184b&rfr_iscdi=true |