Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System

The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.61131-61137
Hauptverfasser: Liu, Yongguang, Gao, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61137
container_issue
container_start_page 61131
container_title IEEE access
container_volume 8
creator Liu, Yongguang
Gao, Xiaohui
description The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.
doi_str_mv 10.1109/ACCESS.2020.2977726
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2453690280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9025215</ieee_id><doaj_id>oai_doaj_org_article_3a2fc20e881840fd90ebf84b0b27184b</doaj_id><sourcerecordid>2453690280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ac4abdee58b93f324af2dbf111a7ec6f27739c72aea2ca04ee392cc4fd64a4883</originalsourceid><addsrcrecordid>eNqNkcFqGzEQhpfSQEKaJ8jF0EMPZV1ppF1pj2Zx20BKoU7OQtKOjIy9cqU1JW-fcTdNe6wuGg3_N5qZv6puOVtyzrpPq75fbzZLYMCW0CmloH1TXQFvu1o0on37T3xZ3ZSyY3Q0pRp1Vbn1iHmLU_SLb9bnVHw6UvwDjxkLjpOdYhoXKSw2uA_1Kua6T2kfxy1JfDzm5ElBrz4dzkRJ-UNZ_JFsnsqEh3fVRbD7gjcv93X1-Hn90H-t779_uetX97UXjZ5q66V1A2KjXSeCAGkDDC5wzq1C3wZQSnRegUUL3jKJKDrwXoahlVZqLa6ru7nukOzOHHM82Pxkko3mdyLlrbGZBt2jERaCB4Zacy1ZGDqGLmjpmANFGUe13s-1aMKfJyyT2aVTHql9A5IW2THQjFRiVp0XVzKG1185M2dvzOyNOXtjXrwh6uNM_UKXQvERR4-vJHnTgJJccMY4cFLr_1f3cTasT6dxIvR2RiPiX4Rab4A34hm6Aay2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453690280</pqid></control><display><type>article</type><title>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB Electronic Journals Library</source><creator>Liu, Yongguang ; Gao, Xiaohui</creator><creatorcontrib>Liu, Yongguang ; Gao, Xiaohui</creatorcontrib><description>The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2977726</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Atmospheric modeling ; Cavity resonators ; Compressible fluids ; compressor ; Computational modeling ; Computer Science ; Computer Science, Information Systems ; Cooling ; Cooling systems ; Curve fitting ; Design optimization ; Energetic macroscopic representation ; Engineering ; Engineering, Electrical &amp; Electronic ; Heat exchange ; Heating systems ; Mathematical model ; Reciprocating compressors ; Representations ; Science &amp; Technology ; self-air-cooling ; Spirals ; Subsystems ; Technology ; Telecommunications ; Thermodynamic models</subject><ispartof>IEEE access, 2020, Vol.8, p.61131-61137</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000527413100121</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c358t-ac4abdee58b93f324af2dbf111a7ec6f27739c72aea2ca04ee392cc4fd64a4883</cites><orcidid>0000-0002-6108-4215 ; 0000-0002-1356-4134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9025215$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Liu, Yongguang</creatorcontrib><creatorcontrib>Gao, Xiaohui</creatorcontrib><title>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.</description><subject>Atmospheric modeling</subject><subject>Cavity resonators</subject><subject>Compressible fluids</subject><subject>compressor</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Cooling</subject><subject>Cooling systems</subject><subject>Curve fitting</subject><subject>Design optimization</subject><subject>Energetic macroscopic representation</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Heat exchange</subject><subject>Heating systems</subject><subject>Mathematical model</subject><subject>Reciprocating compressors</subject><subject>Representations</subject><subject>Science &amp; Technology</subject><subject>self-air-cooling</subject><subject>Spirals</subject><subject>Subsystems</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Thermodynamic models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkcFqGzEQhpfSQEKaJ8jF0EMPZV1ppF1pj2Zx20BKoU7OQtKOjIy9cqU1JW-fcTdNe6wuGg3_N5qZv6puOVtyzrpPq75fbzZLYMCW0CmloH1TXQFvu1o0on37T3xZ3ZSyY3Q0pRp1Vbn1iHmLU_SLb9bnVHw6UvwDjxkLjpOdYhoXKSw2uA_1Kua6T2kfxy1JfDzm5ElBrz4dzkRJ-UNZ_JFsnsqEh3fVRbD7gjcv93X1-Hn90H-t779_uetX97UXjZ5q66V1A2KjXSeCAGkDDC5wzq1C3wZQSnRegUUL3jKJKDrwXoahlVZqLa6ru7nukOzOHHM82Pxkko3mdyLlrbGZBt2jERaCB4Zacy1ZGDqGLmjpmANFGUe13s-1aMKfJyyT2aVTHql9A5IW2THQjFRiVp0XVzKG1185M2dvzOyNOXtjXrwh6uNM_UKXQvERR4-vJHnTgJJccMY4cFLr_1f3cTasT6dxIvR2RiPiX4Rab4A34hm6Aay2</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Yongguang</creator><creator>Gao, Xiaohui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6108-4215</orcidid><orcidid>https://orcid.org/0000-0002-1356-4134</orcidid></search><sort><creationdate>2020</creationdate><title>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</title><author>Liu, Yongguang ; Gao, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ac4abdee58b93f324af2dbf111a7ec6f27739c72aea2ca04ee392cc4fd64a4883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric modeling</topic><topic>Cavity resonators</topic><topic>Compressible fluids</topic><topic>compressor</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Cooling</topic><topic>Cooling systems</topic><topic>Curve fitting</topic><topic>Design optimization</topic><topic>Energetic macroscopic representation</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Heat exchange</topic><topic>Heating systems</topic><topic>Mathematical model</topic><topic>Reciprocating compressors</topic><topic>Representations</topic><topic>Science &amp; Technology</topic><topic>self-air-cooling</topic><topic>Spirals</topic><topic>Subsystems</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Thermodynamic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yongguang</creatorcontrib><creatorcontrib>Gao, Xiaohui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yongguang</au><au>Gao, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>61131</spage><epage>61137</epage><pages>61131-61137</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The self-air-cooling system, as an important part of reciprocating compressor, can continuously cool the cylinder without any auxiliary equipment, which is key to energy saving and efficiency increasing especially for high-pressure micro-compressor. Since it is a complex thermodynamic system with compressible fluid transmission and heat exchange between multiple different subsystems, establishing an accurate mathematical model is very difficult. The thermodynamic models of subsystem are respectively established based on the energetic macroscopic representation (EMR). The EMR model of cooling system is achieved by connecting them based on its working principles, which makes the solving process clear and improves the readability. It is verified by good curve-fitting performance between simulation and experiment in different conditions, which provides foundation for parameters characteristic analysis and structure optimization design.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2977726</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6108-4215</orcidid><orcidid>https://orcid.org/0000-0002-1356-4134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.61131-61137
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453690280
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB Electronic Journals Library
subjects Atmospheric modeling
Cavity resonators
Compressible fluids
compressor
Computational modeling
Computer Science
Computer Science, Information Systems
Cooling
Cooling systems
Curve fitting
Design optimization
Energetic macroscopic representation
Engineering
Engineering, Electrical & Electronic
Heat exchange
Heating systems
Mathematical model
Reciprocating compressors
Representations
Science & Technology
self-air-cooling
Spirals
Subsystems
Technology
Telecommunications
Thermodynamic models
title Energetic Macroscopic Representation of Self-Air-Cooling Reciprocating Compressor's Cooling System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetic%20Macroscopic%20Representation%20of%20Self-Air-Cooling%20Reciprocating%20Compressor's%20Cooling%20System&rft.jtitle=IEEE%20access&rft.au=Liu,%20Yongguang&rft.date=2020&rft.volume=8&rft.spage=61131&rft.epage=61137&rft.pages=61131-61137&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2977726&rft_dat=%3Cproquest_webof%3E2453690280%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453690280&rft_id=info:pmid/&rft_ieee_id=9025215&rft_doaj_id=oai_doaj_org_article_3a2fc20e881840fd90ebf84b0b27184b&rfr_iscdi=true