A Physical Activity Recommender System for Patients With Arterial Hypertension

Recommender systems have been applied in several areas, including e-Health systems, which refers to information and health services enhanced through technology. However, most studies aim at imposing rules to improve lifestyle, rather than recommending nutrition and physical activities. In this conte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.61656-61664
Hauptverfasser: Ferretto, Luciano Rodrigo, Bellei, Ericles Andrei, Biduski, Daiana, Bin, Luiz Carlos Pereira, Moro, Mirella Moura, Cervi, Cristiano Roberto, De Marchi, Ana Carolina Bertoletti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61664
container_issue
container_start_page 61656
container_title IEEE access
container_volume 8
creator Ferretto, Luciano Rodrigo
Bellei, Ericles Andrei
Biduski, Daiana
Bin, Luiz Carlos Pereira
Moro, Mirella Moura
Cervi, Cristiano Roberto
De Marchi, Ana Carolina Bertoletti
description Recommender systems have been applied in several areas, including e-Health systems, which refers to information and health services enhanced through technology. However, most studies aim at imposing rules to improve lifestyle, rather than recommending nutrition and physical activities. In this context, this study aims to develop a system for recommending physical activities for hypertensive patients to create opportunities for the patients so they can search for and create a healthy lifestyle. To achieve this goal, we elaborated on a hypertensive user profile model, called HyperModel2PAR, and a physical activity recommender system for hypertensive patients, called HyperRecSysPA. The model resulting from this study is composed of 32 elements divided into three groups, which were used in the modeling of user profiles within the system for generating HyperRecSysPA recommendations. The developed system was validated by physicians who answered a specific questionnaire. As a result, ~75% of the recommendations generated were approved. Therefore, this study has prospective contributions to the literature, since both models obtained conclusive results in the assessments performed.
doi_str_mv 10.1109/ACCESS.2020.2983564
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2453689710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9047890</ieee_id><doaj_id>oai_doaj_org_article_2ebc11afb9f9481bb8c6aac0fa37876c</doaj_id><sourcerecordid>2453689710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d5a90c77ba5f84be2a143502b8a6207c77a726f8ee0fe7f5553f52f5763aeb8e3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUIDDWl-QS4LOdvVx2olHRfjJoHQhjihRzErj2IZe-VKcmD_fZSsCZ3LDG_mvRnmVdU1JXNKif7ZLRbL1WrOCCNzphUXbXNWXTDa6hkXvP32X_29ukppS0qoAgl5Uf3u6sfNmLyFXd3Z7N98HusntGG_x2GNsV6NKeO-diHWj5A9DjnVf33e1F3MGH2h3Y0HLPWQfBh-VOcOdgmvTvmyevm1fF7czR7-3N4vuoeZbYjKs7UATayUPQinmh4Z0IYLwnoFLSOydECy1ilE4lA6IQR3gjkhWw7YK-SX1f2kuw6wNYfo9xBHE8CbTyDEVwMxe7tDw7C3lILrtdONon2vbAtgiQMulWxt0bqZtA4x_DtiymYbjnEo5xvWlKcpLSkpU3yasjGkFNF9baXEfPhgJh_Mhw_m5ENhXU8sj4hfDE0aqTTh7--dhEs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453689710</pqid></control><display><type>article</type><title>A Physical Activity Recommender System for Patients With Arterial Hypertension</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ferretto, Luciano Rodrigo ; Bellei, Ericles Andrei ; Biduski, Daiana ; Bin, Luiz Carlos Pereira ; Moro, Mirella Moura ; Cervi, Cristiano Roberto ; De Marchi, Ana Carolina Bertoletti</creator><creatorcontrib>Ferretto, Luciano Rodrigo ; Bellei, Ericles Andrei ; Biduski, Daiana ; Bin, Luiz Carlos Pereira ; Moro, Mirella Moura ; Cervi, Cristiano Roberto ; De Marchi, Ana Carolina Bertoletti</creatorcontrib><description>Recommender systems have been applied in several areas, including e-Health systems, which refers to information and health services enhanced through technology. However, most studies aim at imposing rules to improve lifestyle, rather than recommending nutrition and physical activities. In this context, this study aims to develop a system for recommending physical activities for hypertensive patients to create opportunities for the patients so they can search for and create a healthy lifestyle. To achieve this goal, we elaborated on a hypertensive user profile model, called HyperModel2PAR, and a physical activity recommender system for hypertensive patients, called HyperRecSysPA. The model resulting from this study is composed of 32 elements divided into three groups, which were used in the modeling of user profiles within the system for generating HyperRecSysPA recommendations. The developed system was validated by physicians who answered a specific questionnaire. As a result, ~75% of the recommendations generated were approved. Therefore, this study has prospective contributions to the literature, since both models obtained conclusive results in the assessments performed.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2983564</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Blood pressure ; eHealth ; Electronic healthcare ; Exercise ; Guidelines ; Hypertension ; Indexes ; Mathematical model ; Nutrition ; physical activity ; Physicians ; Recommender system ; Recommender systems ; user modeling</subject><ispartof>IEEE access, 2020, Vol.8, p.61656-61664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d5a90c77ba5f84be2a143502b8a6207c77a726f8ee0fe7f5553f52f5763aeb8e3</citedby><cites>FETCH-LOGICAL-c408t-d5a90c77ba5f84be2a143502b8a6207c77a726f8ee0fe7f5553f52f5763aeb8e3</cites><orcidid>0000-0003-1443-1250 ; 0000-0002-2743-4111 ; 0000-0002-7704-3119 ; 0000-0002-0545-2001 ; 0000-0002-5839-8571 ; 0000-0002-6020-6356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9047890$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ferretto, Luciano Rodrigo</creatorcontrib><creatorcontrib>Bellei, Ericles Andrei</creatorcontrib><creatorcontrib>Biduski, Daiana</creatorcontrib><creatorcontrib>Bin, Luiz Carlos Pereira</creatorcontrib><creatorcontrib>Moro, Mirella Moura</creatorcontrib><creatorcontrib>Cervi, Cristiano Roberto</creatorcontrib><creatorcontrib>De Marchi, Ana Carolina Bertoletti</creatorcontrib><title>A Physical Activity Recommender System for Patients With Arterial Hypertension</title><title>IEEE access</title><addtitle>Access</addtitle><description>Recommender systems have been applied in several areas, including e-Health systems, which refers to information and health services enhanced through technology. However, most studies aim at imposing rules to improve lifestyle, rather than recommending nutrition and physical activities. In this context, this study aims to develop a system for recommending physical activities for hypertensive patients to create opportunities for the patients so they can search for and create a healthy lifestyle. To achieve this goal, we elaborated on a hypertensive user profile model, called HyperModel2PAR, and a physical activity recommender system for hypertensive patients, called HyperRecSysPA. The model resulting from this study is composed of 32 elements divided into three groups, which were used in the modeling of user profiles within the system for generating HyperRecSysPA recommendations. The developed system was validated by physicians who answered a specific questionnaire. As a result, ~75% of the recommendations generated were approved. Therefore, this study has prospective contributions to the literature, since both models obtained conclusive results in the assessments performed.</description><subject>Blood pressure</subject><subject>eHealth</subject><subject>Electronic healthcare</subject><subject>Exercise</subject><subject>Guidelines</subject><subject>Hypertension</subject><subject>Indexes</subject><subject>Mathematical model</subject><subject>Nutrition</subject><subject>physical activity</subject><subject>Physicians</subject><subject>Recommender system</subject><subject>Recommender systems</subject><subject>user modeling</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUIDDWl-QS4LOdvVx2olHRfjJoHQhjihRzErj2IZe-VKcmD_fZSsCZ3LDG_mvRnmVdU1JXNKif7ZLRbL1WrOCCNzphUXbXNWXTDa6hkXvP32X_29ukppS0qoAgl5Uf3u6sfNmLyFXd3Z7N98HusntGG_x2GNsV6NKeO-diHWj5A9DjnVf33e1F3MGH2h3Y0HLPWQfBh-VOcOdgmvTvmyevm1fF7czR7-3N4vuoeZbYjKs7UATayUPQinmh4Z0IYLwnoFLSOydECy1ilE4lA6IQR3gjkhWw7YK-SX1f2kuw6wNYfo9xBHE8CbTyDEVwMxe7tDw7C3lILrtdONon2vbAtgiQMulWxt0bqZtA4x_DtiymYbjnEo5xvWlKcpLSkpU3yasjGkFNF9baXEfPhgJh_Mhw_m5ENhXU8sj4hfDE0aqTTh7--dhEs</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ferretto, Luciano Rodrigo</creator><creator>Bellei, Ericles Andrei</creator><creator>Biduski, Daiana</creator><creator>Bin, Luiz Carlos Pereira</creator><creator>Moro, Mirella Moura</creator><creator>Cervi, Cristiano Roberto</creator><creator>De Marchi, Ana Carolina Bertoletti</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1443-1250</orcidid><orcidid>https://orcid.org/0000-0002-2743-4111</orcidid><orcidid>https://orcid.org/0000-0002-7704-3119</orcidid><orcidid>https://orcid.org/0000-0002-0545-2001</orcidid><orcidid>https://orcid.org/0000-0002-5839-8571</orcidid><orcidid>https://orcid.org/0000-0002-6020-6356</orcidid></search><sort><creationdate>2020</creationdate><title>A Physical Activity Recommender System for Patients With Arterial Hypertension</title><author>Ferretto, Luciano Rodrigo ; Bellei, Ericles Andrei ; Biduski, Daiana ; Bin, Luiz Carlos Pereira ; Moro, Mirella Moura ; Cervi, Cristiano Roberto ; De Marchi, Ana Carolina Bertoletti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d5a90c77ba5f84be2a143502b8a6207c77a726f8ee0fe7f5553f52f5763aeb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood pressure</topic><topic>eHealth</topic><topic>Electronic healthcare</topic><topic>Exercise</topic><topic>Guidelines</topic><topic>Hypertension</topic><topic>Indexes</topic><topic>Mathematical model</topic><topic>Nutrition</topic><topic>physical activity</topic><topic>Physicians</topic><topic>Recommender system</topic><topic>Recommender systems</topic><topic>user modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferretto, Luciano Rodrigo</creatorcontrib><creatorcontrib>Bellei, Ericles Andrei</creatorcontrib><creatorcontrib>Biduski, Daiana</creatorcontrib><creatorcontrib>Bin, Luiz Carlos Pereira</creatorcontrib><creatorcontrib>Moro, Mirella Moura</creatorcontrib><creatorcontrib>Cervi, Cristiano Roberto</creatorcontrib><creatorcontrib>De Marchi, Ana Carolina Bertoletti</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferretto, Luciano Rodrigo</au><au>Bellei, Ericles Andrei</au><au>Biduski, Daiana</au><au>Bin, Luiz Carlos Pereira</au><au>Moro, Mirella Moura</au><au>Cervi, Cristiano Roberto</au><au>De Marchi, Ana Carolina Bertoletti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Physical Activity Recommender System for Patients With Arterial Hypertension</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>61656</spage><epage>61664</epage><pages>61656-61664</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Recommender systems have been applied in several areas, including e-Health systems, which refers to information and health services enhanced through technology. However, most studies aim at imposing rules to improve lifestyle, rather than recommending nutrition and physical activities. In this context, this study aims to develop a system for recommending physical activities for hypertensive patients to create opportunities for the patients so they can search for and create a healthy lifestyle. To achieve this goal, we elaborated on a hypertensive user profile model, called HyperModel2PAR, and a physical activity recommender system for hypertensive patients, called HyperRecSysPA. The model resulting from this study is composed of 32 elements divided into three groups, which were used in the modeling of user profiles within the system for generating HyperRecSysPA recommendations. The developed system was validated by physicians who answered a specific questionnaire. As a result, ~75% of the recommendations generated were approved. Therefore, this study has prospective contributions to the literature, since both models obtained conclusive results in the assessments performed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2983564</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1443-1250</orcidid><orcidid>https://orcid.org/0000-0002-2743-4111</orcidid><orcidid>https://orcid.org/0000-0002-7704-3119</orcidid><orcidid>https://orcid.org/0000-0002-0545-2001</orcidid><orcidid>https://orcid.org/0000-0002-5839-8571</orcidid><orcidid>https://orcid.org/0000-0002-6020-6356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.61656-61664
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453689710
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Blood pressure
eHealth
Electronic healthcare
Exercise
Guidelines
Hypertension
Indexes
Mathematical model
Nutrition
physical activity
Physicians
Recommender system
Recommender systems
user modeling
title A Physical Activity Recommender System for Patients With Arterial Hypertension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T00%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Physical%20Activity%20Recommender%20System%20for%20Patients%20With%20Arterial%20Hypertension&rft.jtitle=IEEE%20access&rft.au=Ferretto,%20Luciano%20Rodrigo&rft.date=2020&rft.volume=8&rft.spage=61656&rft.epage=61664&rft.pages=61656-61664&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2983564&rft_dat=%3Cproquest_ieee_%3E2453689710%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453689710&rft_id=info:pmid/&rft_ieee_id=9047890&rft_doaj_id=oai_doaj_org_article_2ebc11afb9f9481bb8c6aac0fa37876c&rfr_iscdi=true