Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing

In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.53511-53521
Hauptverfasser: Li, Huiying, Li, Yang, Xie, Xin, Gao, Shuai, Mao, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53521
container_issue
container_start_page 53511
container_title IEEE access
container_volume 8
creator Li, Huiying
Li, Yang
Xie, Xin
Gao, Shuai
Mao, Dongsheng
description In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use {k} -means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.
doi_str_mv 10.1109/ACCESS.2020.2981288
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2453663830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9039610</ieee_id><doaj_id>oai_doaj_org_article_a234e9b0217640499cfb20916a72cfcd</doaj_id><sourcerecordid>2453663830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaKg6H6BLwGfO_PVNnmUOt1gojAHvoW0udWMrqlJK_jvzawM78u9XM459-MkyTXBc0KwvL0ry8VmM6eY4jmVglAhTpILSnKZsozlp__q82QWwg7HELGVFRfJ20uA0Ti01hW0AenOoI1rBvQ0toNNX7QfUOm8h9C7ztjuHW3s3rba2-EbNc6jbRfGHvyXDWDQPUCPljp8ROBVctboNsDsL18m24fFa7lM18-Pq_JundYciyFlgldaVHVljMkYo6bIhCGGZRJEk3NSEFE3FaOYAzW8AC6wAC0IazTXhBl2mawmXeP0TvXe7rX_Vk5b9dtw_l3FI2zdgtKUcZAVpqTIOeZSRmWKJcl1QeumPmjdTFq9d58jhEHt3Oi7uL6iPL4vZ4LhiGITqvYuBA_NcSrB6uCImhxRB0fUnyORdT2xLAAcGRIzmRPMfgA00oa4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453663830</pqid></control><display><type>article</type><title>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Huiying ; Li, Yang ; Xie, Xin ; Gao, Shuai ; Mao, Dongsheng</creator><creatorcontrib>Li, Huiying ; Li, Yang ; Xie, Xin ; Gao, Shuai ; Mao, Dongsheng</creatorcontrib><description>In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{k} &lt;/tex-math&gt;&lt;/inline-formula&gt;-means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2981288</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary codes ; Clustering ; Feature extraction ; Feature maps ; Heterogeneity ; Image management ; Image retrieval ; Labels ; multi-part correspondence ; Neural networks ; Noise measurement ; pseudo labels ; Semantics ; Similarity ; soft similarity ; Unsupervised hashing</subject><ispartof>IEEE access, 2020, Vol.8, p.53511-53521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</citedby><cites>FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</cites><orcidid>0000-0002-4398-5407 ; 0000-0002-8123-7768 ; 0000-0001-6802-9553 ; 0000-0002-4855-6492 ; 0000-0003-1682-0284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9039610$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Li, Huiying</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Mao, Dongsheng</creatorcontrib><title>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{k} &lt;/tex-math&gt;&lt;/inline-formula&gt;-means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.</description><subject>Binary codes</subject><subject>Clustering</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Heterogeneity</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Labels</subject><subject>multi-part correspondence</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>pseudo labels</subject><subject>Semantics</subject><subject>Similarity</subject><subject>soft similarity</subject><subject>Unsupervised hashing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaKg6H6BLwGfO_PVNnmUOt1gojAHvoW0udWMrqlJK_jvzawM78u9XM459-MkyTXBc0KwvL0ry8VmM6eY4jmVglAhTpILSnKZsozlp__q82QWwg7HELGVFRfJ20uA0Ti01hW0AenOoI1rBvQ0toNNX7QfUOm8h9C7ztjuHW3s3rba2-EbNc6jbRfGHvyXDWDQPUCPljp8ROBVctboNsDsL18m24fFa7lM18-Pq_JundYciyFlgldaVHVljMkYo6bIhCGGZRJEk3NSEFE3FaOYAzW8AC6wAC0IazTXhBl2mawmXeP0TvXe7rX_Vk5b9dtw_l3FI2zdgtKUcZAVpqTIOeZSRmWKJcl1QeumPmjdTFq9d58jhEHt3Oi7uL6iPL4vZ4LhiGITqvYuBA_NcSrB6uCImhxRB0fUnyORdT2xLAAcGRIzmRPMfgA00oa4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Huiying</creator><creator>Li, Yang</creator><creator>Xie, Xin</creator><creator>Gao, Shuai</creator><creator>Mao, Dongsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4398-5407</orcidid><orcidid>https://orcid.org/0000-0002-8123-7768</orcidid><orcidid>https://orcid.org/0000-0001-6802-9553</orcidid><orcidid>https://orcid.org/0000-0002-4855-6492</orcidid><orcidid>https://orcid.org/0000-0003-1682-0284</orcidid></search><sort><creationdate>2020</creationdate><title>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</title><author>Li, Huiying ; Li, Yang ; Xie, Xin ; Gao, Shuai ; Mao, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary codes</topic><topic>Clustering</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Heterogeneity</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Labels</topic><topic>multi-part correspondence</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>pseudo labels</topic><topic>Semantics</topic><topic>Similarity</topic><topic>soft similarity</topic><topic>Unsupervised hashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huiying</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Mao, Dongsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huiying</au><au>Li, Yang</au><au>Xie, Xin</au><au>Gao, Shuai</au><au>Mao, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>53511</spage><epage>53521</epage><pages>53511-53521</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{k} &lt;/tex-math&gt;&lt;/inline-formula&gt;-means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2981288</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4398-5407</orcidid><orcidid>https://orcid.org/0000-0002-8123-7768</orcidid><orcidid>https://orcid.org/0000-0001-6802-9553</orcidid><orcidid>https://orcid.org/0000-0002-4855-6492</orcidid><orcidid>https://orcid.org/0000-0003-1682-0284</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.53511-53521
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2453663830
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Binary codes
Clustering
Feature extraction
Feature maps
Heterogeneity
Image management
Image retrieval
Labels
multi-part correspondence
Neural networks
Noise measurement
pseudo labels
Semantics
Similarity
soft similarity
Unsupervised hashing
title Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo%20Labels%20and%20Soft%20Multi-Part%20Corresponding%20Similarity%20for%20Unsupervised%20Deep%20Hashing&rft.jtitle=IEEE%20access&rft.au=Li,%20Huiying&rft.date=2020&rft.volume=8&rft.spage=53511&rft.epage=53521&rft.pages=53511-53521&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2981288&rft_dat=%3Cproquest_ieee_%3E2453663830%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453663830&rft_id=info:pmid/&rft_ieee_id=9039610&rft_doaj_id=oai_doaj_org_article_a234e9b0217640499cfb20916a72cfcd&rfr_iscdi=true