Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing
In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categori...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.53511-53521 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53521 |
---|---|
container_issue | |
container_start_page | 53511 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Huiying Li, Yang Xie, Xin Gao, Shuai Mao, Dongsheng |
description | In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use {k} -means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin. |
doi_str_mv | 10.1109/ACCESS.2020.2981288 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2453663830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9039610</ieee_id><doaj_id>oai_doaj_org_article_a234e9b0217640499cfb20916a72cfcd</doaj_id><sourcerecordid>2453663830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaKg6H6BLwGfO_PVNnmUOt1gojAHvoW0udWMrqlJK_jvzawM78u9XM459-MkyTXBc0KwvL0ry8VmM6eY4jmVglAhTpILSnKZsozlp__q82QWwg7HELGVFRfJ20uA0Ti01hW0AenOoI1rBvQ0toNNX7QfUOm8h9C7ztjuHW3s3rba2-EbNc6jbRfGHvyXDWDQPUCPljp8ROBVctboNsDsL18m24fFa7lM18-Pq_JundYciyFlgldaVHVljMkYo6bIhCGGZRJEk3NSEFE3FaOYAzW8AC6wAC0IazTXhBl2mawmXeP0TvXe7rX_Vk5b9dtw_l3FI2zdgtKUcZAVpqTIOeZSRmWKJcl1QeumPmjdTFq9d58jhEHt3Oi7uL6iPL4vZ4LhiGITqvYuBA_NcSrB6uCImhxRB0fUnyORdT2xLAAcGRIzmRPMfgA00oa4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453663830</pqid></control><display><type>article</type><title>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Huiying ; Li, Yang ; Xie, Xin ; Gao, Shuai ; Mao, Dongsheng</creator><creatorcontrib>Li, Huiying ; Li, Yang ; Xie, Xin ; Gao, Shuai ; Mao, Dongsheng</creatorcontrib><description>In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2981288</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary codes ; Clustering ; Feature extraction ; Feature maps ; Heterogeneity ; Image management ; Image retrieval ; Labels ; multi-part correspondence ; Neural networks ; Noise measurement ; pseudo labels ; Semantics ; Similarity ; soft similarity ; Unsupervised hashing</subject><ispartof>IEEE access, 2020, Vol.8, p.53511-53521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</citedby><cites>FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</cites><orcidid>0000-0002-4398-5407 ; 0000-0002-8123-7768 ; 0000-0001-6802-9553 ; 0000-0002-4855-6492 ; 0000-0003-1682-0284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9039610$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Li, Huiying</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Mao, Dongsheng</creatorcontrib><title>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</title><title>IEEE access</title><addtitle>Access</addtitle><description>In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.</description><subject>Binary codes</subject><subject>Clustering</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Heterogeneity</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Labels</subject><subject>multi-part correspondence</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>pseudo labels</subject><subject>Semantics</subject><subject>Similarity</subject><subject>soft similarity</subject><subject>Unsupervised hashing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaKg6H6BLwGfO_PVNnmUOt1gojAHvoW0udWMrqlJK_jvzawM78u9XM459-MkyTXBc0KwvL0ry8VmM6eY4jmVglAhTpILSnKZsozlp__q82QWwg7HELGVFRfJ20uA0Ti01hW0AenOoI1rBvQ0toNNX7QfUOm8h9C7ztjuHW3s3rba2-EbNc6jbRfGHvyXDWDQPUCPljp8ROBVctboNsDsL18m24fFa7lM18-Pq_JundYciyFlgldaVHVljMkYo6bIhCGGZRJEk3NSEFE3FaOYAzW8AC6wAC0IazTXhBl2mawmXeP0TvXe7rX_Vk5b9dtw_l3FI2zdgtKUcZAVpqTIOeZSRmWKJcl1QeumPmjdTFq9d58jhEHt3Oi7uL6iPL4vZ4LhiGITqvYuBA_NcSrB6uCImhxRB0fUnyORdT2xLAAcGRIzmRPMfgA00oa4</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Huiying</creator><creator>Li, Yang</creator><creator>Xie, Xin</creator><creator>Gao, Shuai</creator><creator>Mao, Dongsheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4398-5407</orcidid><orcidid>https://orcid.org/0000-0002-8123-7768</orcidid><orcidid>https://orcid.org/0000-0001-6802-9553</orcidid><orcidid>https://orcid.org/0000-0002-4855-6492</orcidid><orcidid>https://orcid.org/0000-0003-1682-0284</orcidid></search><sort><creationdate>2020</creationdate><title>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</title><author>Li, Huiying ; Li, Yang ; Xie, Xin ; Gao, Shuai ; Mao, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-384ba8bcbddd5332d758d1d359e8f641718cfb3204e2d47e4808ea813fa4a13d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary codes</topic><topic>Clustering</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Heterogeneity</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Labels</topic><topic>multi-part correspondence</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>pseudo labels</topic><topic>Semantics</topic><topic>Similarity</topic><topic>soft similarity</topic><topic>Unsupervised hashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huiying</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xie, Xin</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Mao, Dongsheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huiying</au><au>Li, Yang</au><au>Xie, Xin</au><au>Gao, Shuai</au><au>Mao, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>53511</spage><epage>53521</epage><pages>53511-53521</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, unsupervised deep hashing methods have achieved great success in large-scale image retrieval. However, these approaches still suffer two major problems in real world applications. On the one hand, due to the lack of effective supervision information, hash codes of different categories are easily judged to be similar. On the other hand, binary semantic similarity matrices can not reflect ranking relationship and the internal structure information of different images. To solve these problems, we propose a novel unsupervised deep hashing method, named P seudo labels and S oft multi-part C orresponding similarity based H ashing (PSCH), to ensure the heterogeneity of the hash codes. Specifically, we propose a "pseudo labels" method that use <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering and a distance threshold to generate the pseudo labels. Further, in order to reflect the hash codes similarity between instances within the same class, we propose a novel soft multi-part corresponding similarity method to learn better hash codes. This method can divide deep feature maps into several groups and compute the attention map for multi-part similarity matrices. In addition, a novel loss function is proposed to support learning with pseudo labels and soft multi-part corresponding similarity for achieving better performance. Comprehensive experiments on CIFAR-10, NUSWIDE, and Flickr demonstrate that our method can generate high-quality hash codes and outperform state-of-the-art unsupervised hashing methods by a large margin.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2981288</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4398-5407</orcidid><orcidid>https://orcid.org/0000-0002-8123-7768</orcidid><orcidid>https://orcid.org/0000-0001-6802-9553</orcidid><orcidid>https://orcid.org/0000-0002-4855-6492</orcidid><orcidid>https://orcid.org/0000-0003-1682-0284</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.53511-53521 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2453663830 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Binary codes Clustering Feature extraction Feature maps Heterogeneity Image management Image retrieval Labels multi-part correspondence Neural networks Noise measurement pseudo labels Semantics Similarity soft similarity Unsupervised hashing |
title | Pseudo Labels and Soft Multi-Part Corresponding Similarity for Unsupervised Deep Hashing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo%20Labels%20and%20Soft%20Multi-Part%20Corresponding%20Similarity%20for%20Unsupervised%20Deep%20Hashing&rft.jtitle=IEEE%20access&rft.au=Li,%20Huiying&rft.date=2020&rft.volume=8&rft.spage=53511&rft.epage=53521&rft.pages=53511-53521&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2981288&rft_dat=%3Cproquest_ieee_%3E2453663830%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453663830&rft_id=info:pmid/&rft_ieee_id=9039610&rft_doaj_id=oai_doaj_org_article_a234e9b0217640499cfb20916a72cfcd&rfr_iscdi=true |