ON CUMULATIVE RESIDUAL EXTROPY
Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extrop...
Gespeichert in:
Veröffentlicht in: | Probability in the engineering and informational sciences 2020-10, Vol.34 (4), p.605-625 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 4 |
container_start_page | 605 |
container_title | Probability in the engineering and informational sciences |
container_volume | 34 |
creator | Jahanshahi, S. M. A. Zarei, H. Khammar, A. H. |
description | Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included. |
doi_str_mv | 10.1017/S0269964819000196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452894075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0269964819000196</cupid><sourcerecordid>2452894075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AYhBdRsEZ_gBcpeI7um_0-lppqIBppE9HTst0PabG2btqD_96EFjyIpznMPDMwCF0CvgEM4naGM64UpxIUxhgUP0IDoFylUjE4RoPeTnv_FJ217bLLCEnlAF1VT8Nx89iUo7p4yYfTfFbcNaNymL_W0-r57RydBPPR-ouDJqiZ5PX4IS2r-2I8KlNLQGxTGoxzNhhrnbfUWK6k4DKjJHgeXAgOAxCLuWBEgPFzYYhzjBEvFMvC3JIEXe97N3H9tfPtVi_Xu_jZTeqMskwqijs2QbBP2bhu2-iD3sTFysRvDVj3N-g_N3QMOTBmNY8L9-5_q_-nfgDtZVt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452894075</pqid></control><display><type>article</type><title>ON CUMULATIVE RESIDUAL EXTROPY</title><source>Cambridge University Press Journals Complete</source><creator>Jahanshahi, S. M. A. ; Zarei, H. ; Khammar, A. H.</creator><creatorcontrib>Jahanshahi, S. M. A. ; Zarei, H. ; Khammar, A. H.</creatorcontrib><description>Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.</description><identifier>ISSN: 0269-9648</identifier><identifier>EISSN: 1469-8951</identifier><identifier>DOI: 10.1017/S0269964819000196</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Distribution functions ; Random variables ; Uncertainty</subject><ispartof>Probability in the engineering and informational sciences, 2020-10, Vol.34 (4), p.605-625</ispartof><rights>Copyright © Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</citedby><cites>FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0269964819000196/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Jahanshahi, S. M. A.</creatorcontrib><creatorcontrib>Zarei, H.</creatorcontrib><creatorcontrib>Khammar, A. H.</creatorcontrib><title>ON CUMULATIVE RESIDUAL EXTROPY</title><title>Probability in the engineering and informational sciences</title><addtitle>Prob. Eng. Inf. Sci</addtitle><description>Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.</description><subject>Distribution functions</subject><subject>Random variables</subject><subject>Uncertainty</subject><issn>0269-9648</issn><issn>1469-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AYhBdRsEZ_gBcpeI7um_0-lppqIBppE9HTst0PabG2btqD_96EFjyIpznMPDMwCF0CvgEM4naGM64UpxIUxhgUP0IDoFylUjE4RoPeTnv_FJ217bLLCEnlAF1VT8Nx89iUo7p4yYfTfFbcNaNymL_W0-r57RydBPPR-ouDJqiZ5PX4IS2r-2I8KlNLQGxTGoxzNhhrnbfUWK6k4DKjJHgeXAgOAxCLuWBEgPFzYYhzjBEvFMvC3JIEXe97N3H9tfPtVi_Xu_jZTeqMskwqijs2QbBP2bhu2-iD3sTFysRvDVj3N-g_N3QMOTBmNY8L9-5_q_-nfgDtZVt0</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Jahanshahi, S. M. A.</creator><creator>Zarei, H.</creator><creator>Khammar, A. H.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202010</creationdate><title>ON CUMULATIVE RESIDUAL EXTROPY</title><author>Jahanshahi, S. M. A. ; Zarei, H. ; Khammar, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distribution functions</topic><topic>Random variables</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahanshahi, S. M. A.</creatorcontrib><creatorcontrib>Zarei, H.</creatorcontrib><creatorcontrib>Khammar, A. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability in the engineering and informational sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahanshahi, S. M. A.</au><au>Zarei, H.</au><au>Khammar, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON CUMULATIVE RESIDUAL EXTROPY</atitle><jtitle>Probability in the engineering and informational sciences</jtitle><addtitle>Prob. Eng. Inf. Sci</addtitle><date>2020-10</date><risdate>2020</risdate><volume>34</volume><issue>4</issue><spage>605</spage><epage>625</epage><pages>605-625</pages><issn>0269-9648</issn><eissn>1469-8951</eissn><abstract>Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0269964819000196</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-9648 |
ispartof | Probability in the engineering and informational sciences, 2020-10, Vol.34 (4), p.605-625 |
issn | 0269-9648 1469-8951 |
language | eng |
recordid | cdi_proquest_journals_2452894075 |
source | Cambridge University Press Journals Complete |
subjects | Distribution functions Random variables Uncertainty |
title | ON CUMULATIVE RESIDUAL EXTROPY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20CUMULATIVE%20RESIDUAL%20EXTROPY&rft.jtitle=Probability%20in%20the%20engineering%20and%20informational%20sciences&rft.au=Jahanshahi,%20S.%20M.%20A.&rft.date=2020-10&rft.volume=34&rft.issue=4&rft.spage=605&rft.epage=625&rft.pages=605-625&rft.issn=0269-9648&rft.eissn=1469-8951&rft_id=info:doi/10.1017/S0269964819000196&rft_dat=%3Cproquest_cross%3E2452894075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452894075&rft_id=info:pmid/&rft_cupid=10_1017_S0269964819000196&rfr_iscdi=true |