ON CUMULATIVE RESIDUAL EXTROPY

Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability in the engineering and informational sciences 2020-10, Vol.34 (4), p.605-625
Hauptverfasser: Jahanshahi, S. M. A., Zarei, H., Khammar, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 625
container_issue 4
container_start_page 605
container_title Probability in the engineering and informational sciences
container_volume 34
creator Jahanshahi, S. M. A.
Zarei, H.
Khammar, A. H.
description Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.
doi_str_mv 10.1017/S0269964819000196
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452894075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0269964819000196</cupid><sourcerecordid>2452894075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AYhBdRsEZ_gBcpeI7um_0-lppqIBppE9HTst0PabG2btqD_96EFjyIpznMPDMwCF0CvgEM4naGM64UpxIUxhgUP0IDoFylUjE4RoPeTnv_FJ217bLLCEnlAF1VT8Nx89iUo7p4yYfTfFbcNaNymL_W0-r57RydBPPR-ouDJqiZ5PX4IS2r-2I8KlNLQGxTGoxzNhhrnbfUWK6k4DKjJHgeXAgOAxCLuWBEgPFzYYhzjBEvFMvC3JIEXe97N3H9tfPtVi_Xu_jZTeqMskwqijs2QbBP2bhu2-iD3sTFysRvDVj3N-g_N3QMOTBmNY8L9-5_q_-nfgDtZVt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452894075</pqid></control><display><type>article</type><title>ON CUMULATIVE RESIDUAL EXTROPY</title><source>Cambridge University Press Journals Complete</source><creator>Jahanshahi, S. M. A. ; Zarei, H. ; Khammar, A. H.</creator><creatorcontrib>Jahanshahi, S. M. A. ; Zarei, H. ; Khammar, A. H.</creatorcontrib><description>Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.</description><identifier>ISSN: 0269-9648</identifier><identifier>EISSN: 1469-8951</identifier><identifier>DOI: 10.1017/S0269964819000196</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Distribution functions ; Random variables ; Uncertainty</subject><ispartof>Probability in the engineering and informational sciences, 2020-10, Vol.34 (4), p.605-625</ispartof><rights>Copyright © Cambridge University Press 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</citedby><cites>FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0269964819000196/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Jahanshahi, S. M. A.</creatorcontrib><creatorcontrib>Zarei, H.</creatorcontrib><creatorcontrib>Khammar, A. H.</creatorcontrib><title>ON CUMULATIVE RESIDUAL EXTROPY</title><title>Probability in the engineering and informational sciences</title><addtitle>Prob. Eng. Inf. Sci</addtitle><description>Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.</description><subject>Distribution functions</subject><subject>Random variables</subject><subject>Uncertainty</subject><issn>0269-9648</issn><issn>1469-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AYhBdRsEZ_gBcpeI7um_0-lppqIBppE9HTst0PabG2btqD_96EFjyIpznMPDMwCF0CvgEM4naGM64UpxIUxhgUP0IDoFylUjE4RoPeTnv_FJ217bLLCEnlAF1VT8Nx89iUo7p4yYfTfFbcNaNymL_W0-r57RydBPPR-ouDJqiZ5PX4IS2r-2I8KlNLQGxTGoxzNhhrnbfUWK6k4DKjJHgeXAgOAxCLuWBEgPFzYYhzjBEvFMvC3JIEXe97N3H9tfPtVi_Xu_jZTeqMskwqijs2QbBP2bhu2-iD3sTFysRvDVj3N-g_N3QMOTBmNY8L9-5_q_-nfgDtZVt0</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Jahanshahi, S. M. A.</creator><creator>Zarei, H.</creator><creator>Khammar, A. H.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202010</creationdate><title>ON CUMULATIVE RESIDUAL EXTROPY</title><author>Jahanshahi, S. M. A. ; Zarei, H. ; Khammar, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-4faddcfaccdec4ac698768243fe6fdffd0113c0675371aeb7a3dd553e7952fbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Distribution functions</topic><topic>Random variables</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahanshahi, S. M. A.</creatorcontrib><creatorcontrib>Zarei, H.</creatorcontrib><creatorcontrib>Khammar, A. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability in the engineering and informational sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahanshahi, S. M. A.</au><au>Zarei, H.</au><au>Khammar, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON CUMULATIVE RESIDUAL EXTROPY</atitle><jtitle>Probability in the engineering and informational sciences</jtitle><addtitle>Prob. Eng. Inf. Sci</addtitle><date>2020-10</date><risdate>2020</risdate><volume>34</volume><issue>4</issue><spage>605</spage><epage>625</epage><pages>605-625</pages><issn>0269-9648</issn><eissn>1469-8951</eissn><abstract>Recently, an alternative measure of uncertainty called extropy is proposed by Lad et al. [12]. The extropy is a dual of entropy which has been considered by researchers. In this article, we introduce an alternative measure of uncertainty of random variable which we call it cumulative residual extropy. This measure is based on the cumulative distribution function F. Some properties of the proposed measure, such as its estimation and applications, are studied. Finally, some numerical examples for illustrating the theory are included.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0269964819000196</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-9648
ispartof Probability in the engineering and informational sciences, 2020-10, Vol.34 (4), p.605-625
issn 0269-9648
1469-8951
language eng
recordid cdi_proquest_journals_2452894075
source Cambridge University Press Journals Complete
subjects Distribution functions
Random variables
Uncertainty
title ON CUMULATIVE RESIDUAL EXTROPY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20CUMULATIVE%20RESIDUAL%20EXTROPY&rft.jtitle=Probability%20in%20the%20engineering%20and%20informational%20sciences&rft.au=Jahanshahi,%20S.%20M.%20A.&rft.date=2020-10&rft.volume=34&rft.issue=4&rft.spage=605&rft.epage=625&rft.pages=605-625&rft.issn=0269-9648&rft.eissn=1469-8951&rft_id=info:doi/10.1017/S0269964819000196&rft_dat=%3Cproquest_cross%3E2452894075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452894075&rft_id=info:pmid/&rft_cupid=10_1017_S0269964819000196&rfr_iscdi=true