ASYMPTOTIC BEHAVIORS FOR CORRELATED BERNOULLI MODEL

We consider a class of correlated Bernoulli variables, which have the following form: for some 0 < p < 1, $$\begin{align}{P(X_{j+1}=1 \vert {\cal F}_{j})= (1-\theta_j)p+\theta_jS_j/j,}\end{align}$$where 0 ≤ θj ≤ 1, $S_n=\sum _{j=1}^nX_j$ and ${\cal F}_n=\sigma \{X_1,\ldots , X_n\}$. The aim of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability in the engineering and informational sciences 2020-10, Vol.34 (4), p.570-582
Hauptverfasser: Miao, Yu, Ma, Huanhuan, Yang, Qinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of correlated Bernoulli variables, which have the following form: for some 0 < p < 1, $$\begin{align}{P(X_{j+1}=1 \vert {\cal F}_{j})= (1-\theta_j)p+\theta_jS_j/j,}\end{align}$$where 0 ≤ θj ≤ 1, $S_n=\sum _{j=1}^nX_j$ and ${\cal F}_n=\sigma \{X_1,\ldots , X_n\}$. The aim of this paper is to establish the strong law of large numbers which extend some known results, and prove the moderate deviation principle for the correlated Bernoulli model.
ISSN:0269-9648
1469-8951
DOI:10.1017/S0269964819000275