ASYMPTOTIC BEHAVIORS FOR CORRELATED BERNOULLI MODEL
We consider a class of correlated Bernoulli variables, which have the following form: for some 0 < p < 1, $$\begin{align}{P(X_{j+1}=1 \vert {\cal F}_{j})= (1-\theta_j)p+\theta_jS_j/j,}\end{align}$$where 0 ≤ θj ≤ 1, $S_n=\sum _{j=1}^nX_j$ and ${\cal F}_n=\sigma \{X_1,\ldots , X_n\}$. The aim of...
Gespeichert in:
Veröffentlicht in: | Probability in the engineering and informational sciences 2020-10, Vol.34 (4), p.570-582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a class of correlated Bernoulli variables, which have the following form: for some 0 < p < 1,
$$\begin{align}{P(X_{j+1}=1 \vert {\cal F}_{j})= (1-\theta_j)p+\theta_jS_j/j,}\end{align}$$where 0 ≤ θj ≤ 1, $S_n=\sum _{j=1}^nX_j$ and ${\cal F}_n=\sigma \{X_1,\ldots , X_n\}$. The aim of this paper is to establish the strong law of large numbers which extend some known results, and prove the moderate deviation principle for the correlated Bernoulli model. |
---|---|
ISSN: | 0269-9648 1469-8951 |
DOI: | 10.1017/S0269964819000275 |