Strong sums of projections in type \({\rm II}\) factors

Let \(M\) be a type \({\rm II}\) factor and let \(\tau\) be the faithful positive semifinite normal trace, unique up to scalar multiples in the type \({\rm II}_\infty\) case and normalized by \(\tau(I)=1\) in the type \({\rm II}_1\) case. Given \(A\in M^+\), we denote by \(A_+=(A-I)\chi_A(1,\|A\|]\)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Cao, Xinyan, Fang, Junsheng, Yao, Zhaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cao, Xinyan
Fang, Junsheng
Yao, Zhaolin
description Let \(M\) be a type \({\rm II}\) factor and let \(\tau\) be the faithful positive semifinite normal trace, unique up to scalar multiples in the type \({\rm II}_\infty\) case and normalized by \(\tau(I)=1\) in the type \({\rm II}_1\) case. Given \(A\in M^+\), we denote by \(A_+=(A-I)\chi_A(1,\|A\|]\) the excess part of \(A\) and by \(A_-=(I-A)\chi_A(0,1)\) the defect part of \(A\). V. Kaftal, P. Ng and S. Zhang provided necessary and sufficient conditions for a positive operator to be the sum of a finite or infinite collection of projections (not necessarily mutually orthogonal) in type \({\rm I}\) and type \({\rm III}\) factors. For type \({\rm II}\) factors, V. Kaftal, P. Ng and S. Zhang proved that \(\tau(A_+)\geq \tau(A_-)\) is a necessary condition for an operator \(A\in M^+\) which can be written as the sum of a finite or infinite collection of projections and also sufficient if the operator is "diagonalizable". In this paper, we prove that if \(A\in M^+\) and \(\tau(A_+)\geq \tau(A_-)\), then \(A\) can be written as the sum of a finite or infinite collection of projections. This result answers affirmatively a question raised by V. Kaftal, P. Ng and S. Zhang.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2452686462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452686462</sourcerecordid><originalsourceid>FETCH-proquest_journals_24526864623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDy4pys9LVyguzS1WyE9TKCjKz0pNLsnMzytWyMxTKKksSFWI0aiOKcpV8PSsjdFUSEtMLskvKuZhYE1LzClO5YXS3AzKbq4hzh66QAMKS1OLS-Kz8kuL8oBS8UYmpkZmFmYmZkbGxKkCANf6NTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452686462</pqid></control><display><type>article</type><title>Strong sums of projections in type \({\rm II}\) factors</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Cao, Xinyan ; Fang, Junsheng ; Yao, Zhaolin</creator><creatorcontrib>Cao, Xinyan ; Fang, Junsheng ; Yao, Zhaolin</creatorcontrib><description>Let \(M\) be a type \({\rm II}\) factor and let \(\tau\) be the faithful positive semifinite normal trace, unique up to scalar multiples in the type \({\rm II}_\infty\) case and normalized by \(\tau(I)=1\) in the type \({\rm II}_1\) case. Given \(A\in M^+\), we denote by \(A_+=(A-I)\chi_A(1,\|A\|]\) the excess part of \(A\) and by \(A_-=(I-A)\chi_A(0,1)\) the defect part of \(A\). V. Kaftal, P. Ng and S. Zhang provided necessary and sufficient conditions for a positive operator to be the sum of a finite or infinite collection of projections (not necessarily mutually orthogonal) in type \({\rm I}\) and type \({\rm III}\) factors. For type \({\rm II}\) factors, V. Kaftal, P. Ng and S. Zhang proved that \(\tau(A_+)\geq \tau(A_-)\) is a necessary condition for an operator \(A\in M^+\) which can be written as the sum of a finite or infinite collection of projections and also sufficient if the operator is "diagonalizable". In this paper, we prove that if \(A\in M^+\) and \(\tau(A_+)\geq \tau(A_-)\), then \(A\) can be written as the sum of a finite or infinite collection of projections. This result answers affirmatively a question raised by V. Kaftal, P. Ng and S. Zhang.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collection</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Cao, Xinyan</creatorcontrib><creatorcontrib>Fang, Junsheng</creatorcontrib><creatorcontrib>Yao, Zhaolin</creatorcontrib><title>Strong sums of projections in type \({\rm II}\) factors</title><title>arXiv.org</title><description>Let \(M\) be a type \({\rm II}\) factor and let \(\tau\) be the faithful positive semifinite normal trace, unique up to scalar multiples in the type \({\rm II}_\infty\) case and normalized by \(\tau(I)=1\) in the type \({\rm II}_1\) case. Given \(A\in M^+\), we denote by \(A_+=(A-I)\chi_A(1,\|A\|]\) the excess part of \(A\) and by \(A_-=(I-A)\chi_A(0,1)\) the defect part of \(A\). V. Kaftal, P. Ng and S. Zhang provided necessary and sufficient conditions for a positive operator to be the sum of a finite or infinite collection of projections (not necessarily mutually orthogonal) in type \({\rm I}\) and type \({\rm III}\) factors. For type \({\rm II}\) factors, V. Kaftal, P. Ng and S. Zhang proved that \(\tau(A_+)\geq \tau(A_-)\) is a necessary condition for an operator \(A\in M^+\) which can be written as the sum of a finite or infinite collection of projections and also sufficient if the operator is "diagonalizable". In this paper, we prove that if \(A\in M^+\) and \(\tau(A_+)\geq \tau(A_-)\), then \(A\) can be written as the sum of a finite or infinite collection of projections. This result answers affirmatively a question raised by V. Kaftal, P. Ng and S. Zhang.</description><subject>Collection</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDy4pys9LVyguzS1WyE9TKCjKz0pNLsnMzytWyMxTKKksSFWI0aiOKcpV8PSsjdFUSEtMLskvKuZhYE1LzClO5YXS3AzKbq4hzh66QAMKS1OLS-Kz8kuL8oBS8UYmpkZmFmYmZkbGxKkCANf6NTk</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Cao, Xinyan</creator><creator>Fang, Junsheng</creator><creator>Yao, Zhaolin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201020</creationdate><title>Strong sums of projections in type \({\rm II}\) factors</title><author>Cao, Xinyan ; Fang, Junsheng ; Yao, Zhaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24526864623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Collection</topic><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xinyan</creatorcontrib><creatorcontrib>Fang, Junsheng</creatorcontrib><creatorcontrib>Yao, Zhaolin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Xinyan</au><au>Fang, Junsheng</au><au>Yao, Zhaolin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Strong sums of projections in type \({\rm II}\) factors</atitle><jtitle>arXiv.org</jtitle><date>2020-10-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let \(M\) be a type \({\rm II}\) factor and let \(\tau\) be the faithful positive semifinite normal trace, unique up to scalar multiples in the type \({\rm II}_\infty\) case and normalized by \(\tau(I)=1\) in the type \({\rm II}_1\) case. Given \(A\in M^+\), we denote by \(A_+=(A-I)\chi_A(1,\|A\|]\) the excess part of \(A\) and by \(A_-=(I-A)\chi_A(0,1)\) the defect part of \(A\). V. Kaftal, P. Ng and S. Zhang provided necessary and sufficient conditions for a positive operator to be the sum of a finite or infinite collection of projections (not necessarily mutually orthogonal) in type \({\rm I}\) and type \({\rm III}\) factors. For type \({\rm II}\) factors, V. Kaftal, P. Ng and S. Zhang proved that \(\tau(A_+)\geq \tau(A_-)\) is a necessary condition for an operator \(A\in M^+\) which can be written as the sum of a finite or infinite collection of projections and also sufficient if the operator is "diagonalizable". In this paper, we prove that if \(A\in M^+\) and \(\tau(A_+)\geq \tau(A_-)\), then \(A\) can be written as the sum of a finite or infinite collection of projections. This result answers affirmatively a question raised by V. Kaftal, P. Ng and S. Zhang.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2452686462
source Open Access: Freely Accessible Journals by multiple vendors
subjects Collection
title Strong sums of projections in type \({\rm II}\) factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Strong%20sums%20of%20projections%20in%20type%20%5C(%7B%5Crm%20II%7D%5C)%20factors&rft.jtitle=arXiv.org&rft.au=Cao,%20Xinyan&rft.date=2020-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2452686462%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452686462&rft_id=info:pmid/&rfr_iscdi=true