Electrical conductivity of carbonbearing granulite at raised temperatures and pressures

IT has long been recognized that the electrical conductivity of the lower continental crust is anomalously high. Both pore-saturating brines 1–5 and conducting films of carbon at grain boundaries 6–10 have been proposed to explain this, but the evidence remains inconclusive. Here we report measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 1992-12, Vol.360 (6406), p.723-726
Hauptverfasser: Glover, Paul W. J, Vine, F. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 6406
container_start_page 723
container_title Nature (London)
container_volume 360
creator Glover, Paul W. J
Vine, F. J
description IT has long been recognized that the electrical conductivity of the lower continental crust is anomalously high. Both pore-saturating brines 1–5 and conducting films of carbon at grain boundaries 6–10 have been proposed to explain this, but the evidence remains inconclusive. Here we report measurements of electrical conductivity at high temperatures and pressures 11–13 on samples of carbon-bearing and carbon-free granulites with a range of electrolyte saturations. The application of pressure to nominally dry carbon-free samples reduces the electrical conductivity as a result of a progressive reduction in pore connectivity, whereas the carbon-bearing samples show an increase in conductivity under the same conditions—an effect that we ascribe to reconnection of carbon conduction pathways during compaction. Moreover, we find a greater increase in conductivity with temperature for the carbon-bearing samples. In the light of work indicating that the abundance of carbon in high-grade rocks has been underestimated in the past 7,8 , our results provide strong evidence for the role of carbon in lower-crustal conductivity.
doi_str_mv 10.1038/360723a0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452516909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452516909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2910-89c74872629ba3b6e478bd34c6bb104b05c1b73ca371e484911183f80d247133</originalsourceid><addsrcrecordid>eNpt0MtKxDAUBuAgCo6j4BNIwI0uqieXJulSZLzAgJsBlyVJ0yFDp61JKszb27E6blzlBD7-w_kRuiRwR4CpeyZAUqbhCM0IlyLjQsljNAOgKgPFxCk6i3EDADmRfIbeF42zKXirG2y7thps8p8-7XBXY6uD6VrjdPDtGq-DbofGJ4d1wkH76Cqc3LZ3QachuIh1W-F-HOL-d45Oat1Ed_HzztHqabF6fMmWb8-vjw_LzNKCQKYKK7mSVNDCaGaE41KZinErjCHADeSWGMmsZpI4rnhBCFGsVlBRLgljc3Q9xfah-xhcTOWmG0I7biwpz2lORAHFqG4mZUMXY3B12Qe_1WFXEij3rZW_rY30dqKx31_twl_gP_Zqsu13A4fQA_gCiIJ13A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452516909</pqid></control><display><type>article</type><title>Electrical conductivity of carbonbearing granulite at raised temperatures and pressures</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Glover, Paul W. J ; Vine, F. J</creator><creatorcontrib>Glover, Paul W. J ; Vine, F. J</creatorcontrib><description>IT has long been recognized that the electrical conductivity of the lower continental crust is anomalously high. Both pore-saturating brines 1–5 and conducting films of carbon at grain boundaries 6–10 have been proposed to explain this, but the evidence remains inconclusive. Here we report measurements of electrical conductivity at high temperatures and pressures 11–13 on samples of carbon-bearing and carbon-free granulites with a range of electrolyte saturations. The application of pressure to nominally dry carbon-free samples reduces the electrical conductivity as a result of a progressive reduction in pore connectivity, whereas the carbon-bearing samples show an increase in conductivity under the same conditions—an effect that we ascribe to reconnection of carbon conduction pathways during compaction. Moreover, we find a greater increase in conductivity with temperature for the carbon-bearing samples. In the light of work indicating that the abundance of carbon in high-grade rocks has been underestimated in the past 7,8 , our results provide strong evidence for the role of carbon in lower-crustal conductivity.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/360723a0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Auger spectroscopy ; Carbon ; Conduction ; Conductivity ; Continental crust ; Electrical conductivity ; Electrical resistivity ; Electrolytes ; Graphite ; High temperature ; Humanities and Social Sciences ; Laboratories ; letter ; multidisciplinary ; Science ; Science (multidisciplinary) ; Spectrum analysis</subject><ispartof>Nature (London), 1992-12, Vol.360 (6406), p.723-726</ispartof><rights>Springer Nature Limited 1992</rights><rights>Copyright Nature Publishing Group Dec 24-Dec 31, 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2910-89c74872629ba3b6e478bd34c6bb104b05c1b73ca371e484911183f80d247133</citedby><cites>FETCH-LOGICAL-c2910-89c74872629ba3b6e478bd34c6bb104b05c1b73ca371e484911183f80d247133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids></links><search><creatorcontrib>Glover, Paul W. J</creatorcontrib><creatorcontrib>Vine, F. J</creatorcontrib><title>Electrical conductivity of carbonbearing granulite at raised temperatures and pressures</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>IT has long been recognized that the electrical conductivity of the lower continental crust is anomalously high. Both pore-saturating brines 1–5 and conducting films of carbon at grain boundaries 6–10 have been proposed to explain this, but the evidence remains inconclusive. Here we report measurements of electrical conductivity at high temperatures and pressures 11–13 on samples of carbon-bearing and carbon-free granulites with a range of electrolyte saturations. The application of pressure to nominally dry carbon-free samples reduces the electrical conductivity as a result of a progressive reduction in pore connectivity, whereas the carbon-bearing samples show an increase in conductivity under the same conditions—an effect that we ascribe to reconnection of carbon conduction pathways during compaction. Moreover, we find a greater increase in conductivity with temperature for the carbon-bearing samples. In the light of work indicating that the abundance of carbon in high-grade rocks has been underestimated in the past 7,8 , our results provide strong evidence for the role of carbon in lower-crustal conductivity.</description><subject>Auger spectroscopy</subject><subject>Carbon</subject><subject>Conduction</subject><subject>Conductivity</subject><subject>Continental crust</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Graphite</subject><subject>High temperature</subject><subject>Humanities and Social Sciences</subject><subject>Laboratories</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0MtKxDAUBuAgCo6j4BNIwI0uqieXJulSZLzAgJsBlyVJ0yFDp61JKszb27E6blzlBD7-w_kRuiRwR4CpeyZAUqbhCM0IlyLjQsljNAOgKgPFxCk6i3EDADmRfIbeF42zKXirG2y7thps8p8-7XBXY6uD6VrjdPDtGq-DbofGJ4d1wkH76Cqc3LZ3QachuIh1W-F-HOL-d45Oat1Ed_HzztHqabF6fMmWb8-vjw_LzNKCQKYKK7mSVNDCaGaE41KZinErjCHADeSWGMmsZpI4rnhBCFGsVlBRLgljc3Q9xfah-xhcTOWmG0I7biwpz2lORAHFqG4mZUMXY3B12Qe_1WFXEij3rZW_rY30dqKx31_twl_gP_Zqsu13A4fQA_gCiIJ13A</recordid><startdate>19921231</startdate><enddate>19921231</enddate><creator>Glover, Paul W. J</creator><creator>Vine, F. J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>19921231</creationdate><title>Electrical conductivity of carbonbearing granulite at raised temperatures and pressures</title><author>Glover, Paul W. J ; Vine, F. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2910-89c74872629ba3b6e478bd34c6bb104b05c1b73ca371e484911183f80d247133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Auger spectroscopy</topic><topic>Carbon</topic><topic>Conduction</topic><topic>Conductivity</topic><topic>Continental crust</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Graphite</topic><topic>High temperature</topic><topic>Humanities and Social Sciences</topic><topic>Laboratories</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glover, Paul W. J</creatorcontrib><creatorcontrib>Vine, F. J</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glover, Paul W. J</au><au>Vine, F. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical conductivity of carbonbearing granulite at raised temperatures and pressures</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1992-12-31</date><risdate>1992</risdate><volume>360</volume><issue>6406</issue><spage>723</spage><epage>726</epage><pages>723-726</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>IT has long been recognized that the electrical conductivity of the lower continental crust is anomalously high. Both pore-saturating brines 1–5 and conducting films of carbon at grain boundaries 6–10 have been proposed to explain this, but the evidence remains inconclusive. Here we report measurements of electrical conductivity at high temperatures and pressures 11–13 on samples of carbon-bearing and carbon-free granulites with a range of electrolyte saturations. The application of pressure to nominally dry carbon-free samples reduces the electrical conductivity as a result of a progressive reduction in pore connectivity, whereas the carbon-bearing samples show an increase in conductivity under the same conditions—an effect that we ascribe to reconnection of carbon conduction pathways during compaction. Moreover, we find a greater increase in conductivity with temperature for the carbon-bearing samples. In the light of work indicating that the abundance of carbon in high-grade rocks has been underestimated in the past 7,8 , our results provide strong evidence for the role of carbon in lower-crustal conductivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/360723a0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1992-12, Vol.360 (6406), p.723-726
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_journals_2452516909
source Nature; Alma/SFX Local Collection
subjects Auger spectroscopy
Carbon
Conduction
Conductivity
Continental crust
Electrical conductivity
Electrical resistivity
Electrolytes
Graphite
High temperature
Humanities and Social Sciences
Laboratories
letter
multidisciplinary
Science
Science (multidisciplinary)
Spectrum analysis
title Electrical conductivity of carbonbearing granulite at raised temperatures and pressures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20conductivity%20of%20carbonbearing%20granulite%20at%20raised%20temperatures%20and%20pressures&rft.jtitle=Nature%20(London)&rft.au=Glover,%20Paul%20W.%20J&rft.date=1992-12-31&rft.volume=360&rft.issue=6406&rft.spage=723&rft.epage=726&rft.pages=723-726&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/360723a0&rft_dat=%3Cproquest_cross%3E2452516909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452516909&rft_id=info:pmid/&rfr_iscdi=true