Revisiting Modularized Multilingual NMT to Meet Industrial Demands

The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Lyu, Sungwon, Son, Bokyung, Yang, Kichang, Bae, Jaekyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lyu, Sungwon
Son, Bokyung
Yang, Kichang
Bae, Jaekyoung
description The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual neural machine translation model that only share modules among the same languages (M2) as a practical alternative to 1-1 to satisfy industrial requirements. Through comprehensive experiments, we identify the benefits of multi-way training and demonstrate that the M2 can enjoy these benefits without suffering from the capacity bottleneck. Furthermore, the interlingual space of the M2 allows convenient modification of the model. By leveraging trained modules, we find that incrementally added modules exhibit better performance than singly trained models. The zero-shot performance of the added modules is even comparable to supervised models. Our findings suggest that the M2 can be a competent candidate for multilingual translation in industries.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2452252421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452252421</sourcerecordid><originalsourceid>FETCH-proquest_journals_24522524213</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_EHAutDeNOvtChzhI9xLIVVJiormJg19vBz_A6cA5Z8IKEKKpNi3AjJVEQ13XsFqDlKJg2yu-Ldlk_Z2rYLLT0X7QcJVdsm60WTt-UR1PgSvExM_eZErRjnqPD-0NLdj0ph1h-eOcLY-HbneqnjG8MlLqh5CjH1MPrQSQ0EIj_ru-xQk5tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452252421</pqid></control><display><type>article</type><title>Revisiting Modularized Multilingual NMT to Meet Industrial Demands</title><source>Free E- Journals</source><creator>Lyu, Sungwon ; Son, Bokyung ; Yang, Kichang ; Bae, Jaekyoung</creator><creatorcontrib>Lyu, Sungwon ; Son, Bokyung ; Yang, Kichang ; Bae, Jaekyoung</creatorcontrib><description>The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual neural machine translation model that only share modules among the same languages (M2) as a practical alternative to 1-1 to satisfy industrial requirements. Through comprehensive experiments, we identify the benefits of multi-way training and demonstrate that the M2 can enjoy these benefits without suffering from the capacity bottleneck. Furthermore, the interlingual space of the M2 allows convenient modification of the model. By leveraging trained modules, we find that incrementally added modules exhibit better performance than singly trained models. The zero-shot performance of the added modules is even comparable to supervised models. Our findings suggest that the M2 can be a competent candidate for multilingual translation in industries.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Machine translation ; Maintainability ; Modules ; Multilingualism ; Performance degradation</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lyu, Sungwon</creatorcontrib><creatorcontrib>Son, Bokyung</creatorcontrib><creatorcontrib>Yang, Kichang</creatorcontrib><creatorcontrib>Bae, Jaekyoung</creatorcontrib><title>Revisiting Modularized Multilingual NMT to Meet Industrial Demands</title><title>arXiv.org</title><description>The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual neural machine translation model that only share modules among the same languages (M2) as a practical alternative to 1-1 to satisfy industrial requirements. Through comprehensive experiments, we identify the benefits of multi-way training and demonstrate that the M2 can enjoy these benefits without suffering from the capacity bottleneck. Furthermore, the interlingual space of the M2 allows convenient modification of the model. By leveraging trained modules, we find that incrementally added modules exhibit better performance than singly trained models. The zero-shot performance of the added modules is even comparable to supervised models. Our findings suggest that the M2 can be a competent candidate for multilingual translation in industries.</description><subject>Machine translation</subject><subject>Maintainability</subject><subject>Modules</subject><subject>Multilingualism</subject><subject>Performance degradation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirsKwjAUQIMgWLT_EHAutDeNOvtChzhI9xLIVVJiormJg19vBz_A6cA5Z8IKEKKpNi3AjJVEQ13XsFqDlKJg2yu-Ldlk_Z2rYLLT0X7QcJVdsm60WTt-UR1PgSvExM_eZErRjnqPD-0NLdj0ph1h-eOcLY-HbneqnjG8MlLqh5CjH1MPrQSQ0EIj_ru-xQk5tA</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Lyu, Sungwon</creator><creator>Son, Bokyung</creator><creator>Yang, Kichang</creator><creator>Bae, Jaekyoung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201019</creationdate><title>Revisiting Modularized Multilingual NMT to Meet Industrial Demands</title><author>Lyu, Sungwon ; Son, Bokyung ; Yang, Kichang ; Bae, Jaekyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24522524213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Machine translation</topic><topic>Maintainability</topic><topic>Modules</topic><topic>Multilingualism</topic><topic>Performance degradation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Sungwon</creatorcontrib><creatorcontrib>Son, Bokyung</creatorcontrib><creatorcontrib>Yang, Kichang</creatorcontrib><creatorcontrib>Bae, Jaekyoung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Sungwon</au><au>Son, Bokyung</au><au>Yang, Kichang</au><au>Bae, Jaekyoung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Revisiting Modularized Multilingual NMT to Meet Industrial Demands</atitle><jtitle>arXiv.org</jtitle><date>2020-10-19</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual neural machine translation model that only share modules among the same languages (M2) as a practical alternative to 1-1 to satisfy industrial requirements. Through comprehensive experiments, we identify the benefits of multi-way training and demonstrate that the M2 can enjoy these benefits without suffering from the capacity bottleneck. Furthermore, the interlingual space of the M2 allows convenient modification of the model. By leveraging trained modules, we find that incrementally added modules exhibit better performance than singly trained models. The zero-shot performance of the added modules is even comparable to supervised models. Our findings suggest that the M2 can be a competent candidate for multilingual translation in industries.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2452252421
source Free E- Journals
subjects Machine translation
Maintainability
Modules
Multilingualism
Performance degradation
title Revisiting Modularized Multilingual NMT to Meet Industrial Demands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Revisiting%20Modularized%20Multilingual%20NMT%20to%20Meet%20Industrial%20Demands&rft.jtitle=arXiv.org&rft.au=Lyu,%20Sungwon&rft.date=2020-10-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2452252421%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452252421&rft_id=info:pmid/&rfr_iscdi=true