The fundamental theorem of finite fields: a proof from first principles
A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chavez, Anastasia O'Neill, Christopher |
description | A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles." |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2452252062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452252062</sourcerecordid><originalsourceid>FETCH-proquest_journals_24522520623</originalsourceid><addsrcrecordid>eNqNi0sKwjAURYMgWLR7CDguxJemFafiZwGdl2BfaEqa1Lx0_0ZwAY4unHPuhhUg5ak61wA7VhJNQghoWlBKFuzRjcjN6gc9o0_a8TRiiDjzYLix3qZsLbqBLlzzJYYvjmHOMFLKwPqXXRzSgW2NdoTlb_fseL9112eVP-8VKfVTWKPPqodaASgQDcj_qg_2nDuN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452252062</pqid></control><display><type>article</type><title>The fundamental theorem of finite fields: a proof from first principles</title><source>Free E- Journals</source><creator>Chavez, Anastasia ; O'Neill, Christopher</creator><creatorcontrib>Chavez, Anastasia ; O'Neill, Christopher</creatorcontrib><description>A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Binary system ; Combinatorial analysis ; Fields (mathematics) ; First principles ; Numbers ; Students ; Technical education ; Theorems</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>O'Neill, Christopher</creatorcontrib><title>The fundamental theorem of finite fields: a proof from first principles</title><title>arXiv.org</title><description>A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."</description><subject>Algebra</subject><subject>Binary system</subject><subject>Combinatorial analysis</subject><subject>Fields (mathematics)</subject><subject>First principles</subject><subject>Numbers</subject><subject>Students</subject><subject>Technical education</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0sKwjAURYMgWLR7CDguxJemFafiZwGdl2BfaEqa1Lx0_0ZwAY4unHPuhhUg5ak61wA7VhJNQghoWlBKFuzRjcjN6gc9o0_a8TRiiDjzYLix3qZsLbqBLlzzJYYvjmHOMFLKwPqXXRzSgW2NdoTlb_fseL9112eVP-8VKfVTWKPPqodaASgQDcj_qg_2nDuN</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Chavez, Anastasia</creator><creator>O'Neill, Christopher</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210820</creationdate><title>The fundamental theorem of finite fields: a proof from first principles</title><author>Chavez, Anastasia ; O'Neill, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24522520623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Binary system</topic><topic>Combinatorial analysis</topic><topic>Fields (mathematics)</topic><topic>First principles</topic><topic>Numbers</topic><topic>Students</topic><topic>Technical education</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>O'Neill, Christopher</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Anastasia</au><au>O'Neill, Christopher</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The fundamental theorem of finite fields: a proof from first principles</atitle><jtitle>arXiv.org</jtitle><date>2021-08-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2452252062 |
source | Free E- Journals |
subjects | Algebra Binary system Combinatorial analysis Fields (mathematics) First principles Numbers Students Technical education Theorems |
title | The fundamental theorem of finite fields: a proof from first principles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20fundamental%20theorem%20of%20finite%20fields:%20a%20proof%20from%20first%20principles&rft.jtitle=arXiv.org&rft.au=Chavez,%20Anastasia&rft.date=2021-08-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2452252062%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452252062&rft_id=info:pmid/&rfr_iscdi=true |