The fundamental theorem of finite fields: a proof from first principles

A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Chavez, Anastasia, O'Neill, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chavez, Anastasia
O'Neill, Christopher
description A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2452252062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452252062</sourcerecordid><originalsourceid>FETCH-proquest_journals_24522520623</originalsourceid><addsrcrecordid>eNqNi0sKwjAURYMgWLR7CDguxJemFafiZwGdl2BfaEqa1Lx0_0ZwAY4unHPuhhUg5ak61wA7VhJNQghoWlBKFuzRjcjN6gc9o0_a8TRiiDjzYLix3qZsLbqBLlzzJYYvjmHOMFLKwPqXXRzSgW2NdoTlb_fseL9112eVP-8VKfVTWKPPqodaASgQDcj_qg_2nDuN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452252062</pqid></control><display><type>article</type><title>The fundamental theorem of finite fields: a proof from first principles</title><source>Free E- Journals</source><creator>Chavez, Anastasia ; O'Neill, Christopher</creator><creatorcontrib>Chavez, Anastasia ; O'Neill, Christopher</creatorcontrib><description>A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Binary system ; Combinatorial analysis ; Fields (mathematics) ; First principles ; Numbers ; Students ; Technical education ; Theorems</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>O'Neill, Christopher</creatorcontrib><title>The fundamental theorem of finite fields: a proof from first principles</title><title>arXiv.org</title><description>A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."</description><subject>Algebra</subject><subject>Binary system</subject><subject>Combinatorial analysis</subject><subject>Fields (mathematics)</subject><subject>First principles</subject><subject>Numbers</subject><subject>Students</subject><subject>Technical education</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0sKwjAURYMgWLR7CDguxJemFafiZwGdl2BfaEqa1Lx0_0ZwAY4unHPuhhUg5ak61wA7VhJNQghoWlBKFuzRjcjN6gc9o0_a8TRiiDjzYLix3qZsLbqBLlzzJYYvjmHOMFLKwPqXXRzSgW2NdoTlb_fseL9112eVP-8VKfVTWKPPqodaASgQDcj_qg_2nDuN</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Chavez, Anastasia</creator><creator>O'Neill, Christopher</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210820</creationdate><title>The fundamental theorem of finite fields: a proof from first principles</title><author>Chavez, Anastasia ; O'Neill, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24522520623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Binary system</topic><topic>Combinatorial analysis</topic><topic>Fields (mathematics)</topic><topic>First principles</topic><topic>Numbers</topic><topic>Students</topic><topic>Technical education</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chavez, Anastasia</creatorcontrib><creatorcontrib>O'Neill, Christopher</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavez, Anastasia</au><au>O'Neill, Christopher</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The fundamental theorem of finite fields: a proof from first principles</atitle><jtitle>arXiv.org</jtitle><date>2021-08-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A mathematics student's first introduction to the fundamental theorem of finite fields (FTFF) often occurs in an advanced abstract algebra course and invokes the power of Galois theory to prove it. Yet the combinatorial and algebraic coding theory applications of finite fields can show up early on for students in STEM. To make the FTFF more accessible to students lacking exposure to Galois theory, we provide a proof from algebraic "first principles."</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2452252062
source Free E- Journals
subjects Algebra
Binary system
Combinatorial analysis
Fields (mathematics)
First principles
Numbers
Students
Technical education
Theorems
title The fundamental theorem of finite fields: a proof from first principles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20fundamental%20theorem%20of%20finite%20fields:%20a%20proof%20from%20first%20principles&rft.jtitle=arXiv.org&rft.au=Chavez,%20Anastasia&rft.date=2021-08-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2452252062%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452252062&rft_id=info:pmid/&rfr_iscdi=true