Practical source-independent quantum random number generation with detector efficiency mismatch

Quantum random number generators (QRNGs) are widely used in information processing tasks. The quality of the random numbers obtained from QRNGs relies on the accurate characterization of the physical implementations. In practice, realistic devices are difficult to characterize, resulting in incorrec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2020-10, Vol.19 (10), Article 384
Hauptverfasser: Ma, Di, Wang, Yangpeng, Wei, Kejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Quantum information processing
container_volume 19
creator Ma, Di
Wang, Yangpeng
Wei, Kejin
description Quantum random number generators (QRNGs) are widely used in information processing tasks. The quality of the random numbers obtained from QRNGs relies on the accurate characterization of the physical implementations. In practice, realistic devices are difficult to characterize, resulting in incorrect entropy estimations of the output random numbers. Recently, a novel quantum random number generation (QRNG) scheme, referred to as source-independent QRNG (SIQRNG), has attracted a lot of interest. The scheme can provide certified randomness by using untrusted and uncharacterized sources, under the assumption that the measurement devices are trusted. However, realistic devices inevitably feature imperfections. Here, we show that the output randomness of SIQRNG is compromised in the presence of detection imperfection , by constructing an attack based on a time-domain detection efficiency mismatch between two practical detectors. More importantly, we provide an unconditional security proof of SIQRNG that takes detection efficiency mismatch into account. In addition, we provide a parameter optimization method to effectively improve the final random number generation rate. Our work demonstrates that SIQRNG is highly practical and that randomness can be extracted even in the presence of a detection efficiency mismatch.
doi_str_mv 10.1007/s11128-020-02865-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452108737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452108737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-60ebe435ee0c64d990a7328264711e6b8bbea9e82f45f582c4f12a6352999d003</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-NtnsUYpaoaAHPYdsdrZN6WbbJIv03xu7gjcP8wHzvjPMg9AtJfeUkOohUkqZKggjOZQUhThDMyoqXlDO2fmpz6NKiEt0FeOWEEalkjOk34OxyVmzw3EYg4XC-Rb2kJNP-DAan8YeB-Pbocd-7BsIeA0egklu8PjLpQ1uIYFNQ8DQdc468PaIexd7k-zmGl10Zhfh5rfO0efz08diWazeXl4Xj6vCclqnQhJooOQCgFhZtnVNTMWZYrKsKAXZqKYBU4NiXSk6oZgtO8qM5ILVdd0Swufobtq7D8NhhJj0Nr_j80nNSsEoURWvsopNKhuGGAN0eh9cb8JRU6J_QOoJpM4g9QmkFtnEJ1PMYr-G8Lf6H9c3NEt3Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452108737</pqid></control><display><type>article</type><title>Practical source-independent quantum random number generation with detector efficiency mismatch</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ma, Di ; Wang, Yangpeng ; Wei, Kejin</creator><creatorcontrib>Ma, Di ; Wang, Yangpeng ; Wei, Kejin</creatorcontrib><description>Quantum random number generators (QRNGs) are widely used in information processing tasks. The quality of the random numbers obtained from QRNGs relies on the accurate characterization of the physical implementations. In practice, realistic devices are difficult to characterize, resulting in incorrect entropy estimations of the output random numbers. Recently, a novel quantum random number generation (QRNG) scheme, referred to as source-independent QRNG (SIQRNG), has attracted a lot of interest. The scheme can provide certified randomness by using untrusted and uncharacterized sources, under the assumption that the measurement devices are trusted. However, realistic devices inevitably feature imperfections. Here, we show that the output randomness of SIQRNG is compromised in the presence of detection imperfection , by constructing an attack based on a time-domain detection efficiency mismatch between two practical detectors. More importantly, we provide an unconditional security proof of SIQRNG that takes detection efficiency mismatch into account. In addition, we provide a parameter optimization method to effectively improve the final random number generation rate. Our work demonstrates that SIQRNG is highly practical and that randomness can be extracted even in the presence of a detection efficiency mismatch.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02865-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data processing ; Data Structures and Information Theory ; Defects ; Efficiency ; Mathematical Physics ; Measuring instruments ; Numbers ; Optimization ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Random numbers ; Randomness ; Spintronics</subject><ispartof>Quantum information processing, 2020-10, Vol.19 (10), Article 384</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-60ebe435ee0c64d990a7328264711e6b8bbea9e82f45f582c4f12a6352999d003</citedby><cites>FETCH-LOGICAL-c319t-60ebe435ee0c64d990a7328264711e6b8bbea9e82f45f582c4f12a6352999d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02865-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02865-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ma, Di</creatorcontrib><creatorcontrib>Wang, Yangpeng</creatorcontrib><creatorcontrib>Wei, Kejin</creatorcontrib><title>Practical source-independent quantum random number generation with detector efficiency mismatch</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Quantum random number generators (QRNGs) are widely used in information processing tasks. The quality of the random numbers obtained from QRNGs relies on the accurate characterization of the physical implementations. In practice, realistic devices are difficult to characterize, resulting in incorrect entropy estimations of the output random numbers. Recently, a novel quantum random number generation (QRNG) scheme, referred to as source-independent QRNG (SIQRNG), has attracted a lot of interest. The scheme can provide certified randomness by using untrusted and uncharacterized sources, under the assumption that the measurement devices are trusted. However, realistic devices inevitably feature imperfections. Here, we show that the output randomness of SIQRNG is compromised in the presence of detection imperfection , by constructing an attack based on a time-domain detection efficiency mismatch between two practical detectors. More importantly, we provide an unconditional security proof of SIQRNG that takes detection efficiency mismatch into account. In addition, we provide a parameter optimization method to effectively improve the final random number generation rate. Our work demonstrates that SIQRNG is highly practical and that randomness can be extracted even in the presence of a detection efficiency mismatch.</description><subject>Data processing</subject><subject>Data Structures and Information Theory</subject><subject>Defects</subject><subject>Efficiency</subject><subject>Mathematical Physics</subject><subject>Measuring instruments</subject><subject>Numbers</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Random numbers</subject><subject>Randomness</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82o-NtnsUYpaoaAHPYdsdrZN6WbbJIv03xu7gjcP8wHzvjPMg9AtJfeUkOohUkqZKggjOZQUhThDMyoqXlDO2fmpz6NKiEt0FeOWEEalkjOk34OxyVmzw3EYg4XC-Rb2kJNP-DAan8YeB-Pbocd-7BsIeA0egklu8PjLpQ1uIYFNQ8DQdc468PaIexd7k-zmGl10Zhfh5rfO0efz08diWazeXl4Xj6vCclqnQhJooOQCgFhZtnVNTMWZYrKsKAXZqKYBU4NiXSk6oZgtO8qM5ILVdd0Swufobtq7D8NhhJj0Nr_j80nNSsEoURWvsopNKhuGGAN0eh9cb8JRU6J_QOoJpM4g9QmkFtnEJ1PMYr-G8Lf6H9c3NEt3Jw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ma, Di</creator><creator>Wang, Yangpeng</creator><creator>Wei, Kejin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Practical source-independent quantum random number generation with detector efficiency mismatch</title><author>Ma, Di ; Wang, Yangpeng ; Wei, Kejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-60ebe435ee0c64d990a7328264711e6b8bbea9e82f45f582c4f12a6352999d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data processing</topic><topic>Data Structures and Information Theory</topic><topic>Defects</topic><topic>Efficiency</topic><topic>Mathematical Physics</topic><topic>Measuring instruments</topic><topic>Numbers</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Random numbers</topic><topic>Randomness</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Di</creatorcontrib><creatorcontrib>Wang, Yangpeng</creatorcontrib><creatorcontrib>Wei, Kejin</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Di</au><au>Wang, Yangpeng</au><au>Wei, Kejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical source-independent quantum random number generation with detector efficiency mismatch</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>19</volume><issue>10</issue><artnum>384</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Quantum random number generators (QRNGs) are widely used in information processing tasks. The quality of the random numbers obtained from QRNGs relies on the accurate characterization of the physical implementations. In practice, realistic devices are difficult to characterize, resulting in incorrect entropy estimations of the output random numbers. Recently, a novel quantum random number generation (QRNG) scheme, referred to as source-independent QRNG (SIQRNG), has attracted a lot of interest. The scheme can provide certified randomness by using untrusted and uncharacterized sources, under the assumption that the measurement devices are trusted. However, realistic devices inevitably feature imperfections. Here, we show that the output randomness of SIQRNG is compromised in the presence of detection imperfection , by constructing an attack based on a time-domain detection efficiency mismatch between two practical detectors. More importantly, we provide an unconditional security proof of SIQRNG that takes detection efficiency mismatch into account. In addition, we provide a parameter optimization method to effectively improve the final random number generation rate. Our work demonstrates that SIQRNG is highly practical and that randomness can be extracted even in the presence of a detection efficiency mismatch.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02865-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020-10, Vol.19 (10), Article 384
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2452108737
source SpringerLink Journals - AutoHoldings
subjects Data processing
Data Structures and Information Theory
Defects
Efficiency
Mathematical Physics
Measuring instruments
Numbers
Optimization
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Random numbers
Randomness
Spintronics
title Practical source-independent quantum random number generation with detector efficiency mismatch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20source-independent%20quantum%20random%20number%20generation%20with%20detector%20efficiency%20mismatch&rft.jtitle=Quantum%20information%20processing&rft.au=Ma,%20Di&rft.date=2020-10-01&rft.volume=19&rft.issue=10&rft.artnum=384&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02865-5&rft_dat=%3Cproquest_cross%3E2452108737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452108737&rft_id=info:pmid/&rfr_iscdi=true