Pre-trained models for natural language processing: A survey
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2020-10, Vol.63 (10), p.1872-1897 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1897 |
---|---|
container_issue | 10 |
container_start_page | 1872 |
container_title | Science China. Technological sciences |
container_volume | 63 |
creator | Qiu, XiPeng Sun, TianXiang Xu, YiGe Shao, YunFan Dai, Ning Huang, XuanJing |
description | Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next, we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks. |
doi_str_mv | 10.1007/s11431-020-1647-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452108732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452108732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-91787d931a77f9402479bd2e85bcf7da44d462defd558c3240547253e8969203</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA5-hMPjYb8VKKX1DQQ-8h3WSXlu1uTXaF_ntTVvDkXGYO7_vOzEPILcI9AuiHhCgFMuDAsJCaiQsyw7IwDA3AZZ4LLZkWHK_JIqU95BKlAZQz8vQZAxui23XB00PvQ5to3UfauWGMrqWt65rRNYEeY1-FlHZd80iXNI3xO5xuyFXt2hQWv31ONi_Pm9UbW3-8vq-Wa1YJZQZmUJfaG4FO69pI4FKbreehVNuq1t5J6WXBfai9UmUluAQlNVcilKYwHMSc3E2x-YavMaTB7vsxdnmj5VJxhDL_llU4qarYpxRDbY9xd3DxZBHsGZOdMNmMyZ4xWZE9fPKkrO2aEP-S_zf9AGgvaBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452108732</pqid></control><display><type>article</type><title>Pre-trained models for natural language processing: A survey</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Qiu, XiPeng ; Sun, TianXiang ; Xu, YiGe ; Shao, YunFan ; Dai, Ning ; Huang, XuanJing</creator><creatorcontrib>Qiu, XiPeng ; Sun, TianXiang ; Xu, YiGe ; Shao, YunFan ; Dai, Ning ; Huang, XuanJing</creatorcontrib><description>Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next, we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-020-1647-3</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Engineering ; Natural language processing ; Review ; Taxonomy</subject><ispartof>Science China. Technological sciences, 2020-10, Vol.63 (10), p.1872-1897</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-91787d931a77f9402479bd2e85bcf7da44d462defd558c3240547253e8969203</citedby><cites>FETCH-LOGICAL-c359t-91787d931a77f9402479bd2e85bcf7da44d462defd558c3240547253e8969203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-020-1647-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-020-1647-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Qiu, XiPeng</creatorcontrib><creatorcontrib>Sun, TianXiang</creatorcontrib><creatorcontrib>Xu, YiGe</creatorcontrib><creatorcontrib>Shao, YunFan</creatorcontrib><creatorcontrib>Dai, Ning</creatorcontrib><creatorcontrib>Huang, XuanJing</creatorcontrib><title>Pre-trained models for natural language processing: A survey</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next, we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.</description><subject>Engineering</subject><subject>Natural language processing</subject><subject>Review</subject><subject>Taxonomy</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA5-hMPjYb8VKKX1DQQ-8h3WSXlu1uTXaF_ntTVvDkXGYO7_vOzEPILcI9AuiHhCgFMuDAsJCaiQsyw7IwDA3AZZ4LLZkWHK_JIqU95BKlAZQz8vQZAxui23XB00PvQ5to3UfauWGMrqWt65rRNYEeY1-FlHZd80iXNI3xO5xuyFXt2hQWv31ONi_Pm9UbW3-8vq-Wa1YJZQZmUJfaG4FO69pI4FKbreehVNuq1t5J6WXBfai9UmUluAQlNVcilKYwHMSc3E2x-YavMaTB7vsxdnmj5VJxhDL_llU4qarYpxRDbY9xd3DxZBHsGZOdMNmMyZ4xWZE9fPKkrO2aEP-S_zf9AGgvaBA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Qiu, XiPeng</creator><creator>Sun, TianXiang</creator><creator>Xu, YiGe</creator><creator>Shao, YunFan</creator><creator>Dai, Ning</creator><creator>Huang, XuanJing</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Pre-trained models for natural language processing: A survey</title><author>Qiu, XiPeng ; Sun, TianXiang ; Xu, YiGe ; Shao, YunFan ; Dai, Ning ; Huang, XuanJing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-91787d931a77f9402479bd2e85bcf7da44d462defd558c3240547253e8969203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Natural language processing</topic><topic>Review</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, XiPeng</creatorcontrib><creatorcontrib>Sun, TianXiang</creatorcontrib><creatorcontrib>Xu, YiGe</creatorcontrib><creatorcontrib>Shao, YunFan</creatorcontrib><creatorcontrib>Dai, Ning</creatorcontrib><creatorcontrib>Huang, XuanJing</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, XiPeng</au><au>Sun, TianXiang</au><au>Xu, YiGe</au><au>Shao, YunFan</au><au>Dai, Ning</au><au>Huang, XuanJing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-trained models for natural language processing: A survey</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>63</volume><issue>10</issue><spage>1872</spage><epage>1897</epage><pages>1872-1897</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next, we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11431-020-1647-3</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2020-10, Vol.63 (10), p.1872-1897 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_proquest_journals_2452108732 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Engineering Natural language processing Review Taxonomy |
title | Pre-trained models for natural language processing: A survey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-trained%20models%20for%20natural%20language%20processing:%20A%20survey&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Qiu,%20XiPeng&rft.date=2020-10-01&rft.volume=63&rft.issue=10&rft.spage=1872&rft.epage=1897&rft.pages=1872-1897&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-020-1647-3&rft_dat=%3Cproquest_cross%3E2452108732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452108732&rft_id=info:pmid/&rfr_iscdi=true |