On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity
A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results a...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2020-07, Vol.102 (1), p.283-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 1 |
container_start_page | 283 |
container_title | Doklady. Mathematics |
container_volume | 102 |
creator | Nefedov, N. N. Rudenko, O. V. |
description | A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained. |
doi_str_mv | 10.1134/S1064562420040146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452108222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452108222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujiYj-AO-aeOu039sugYCaoMSI10vZOikZ7WjXEP69hZl4Ybxqe87znJO-ANxi9IAxZY8fGAnGBWEEIYYwE2dggDnFSUYFOY_32E6O_Utw5f0mQjySAxAWBnZrBV9tp625h6Nt2-hal7J_SlPBcWP3SWihreHMWdN5qA0cB_elnE-Wh1bB6S6ceA_3ulvD9yArFwvlSX-1VWikg2_WNNoo6XR3uAYXtWy8uvk5h-BzNl1OnpP54ullMponJcWiS9Iqz2uJ0xUv2UpkaZ5yyTBTghKBEKZUorzMVlxltKwYomXKVVQUwxzF_2Z0CO76ua2zu6B8V2xscCauLEgMAKOMEBIp3FOls947VRet01vpDgVGxTHd4k-60SG94yNrYhS_k_-XvgHS53qN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452108222</pqid></control><display><type>article</type><title>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nefedov, N. N. ; Rudenko, O. V.</creator><creatorcontrib>Nefedov, N. N. ; Rudenko, O. V.</creatorcontrib><description>A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562420040146</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplification ; Boundary value problems ; Mathematics ; Mathematics and Statistics ; Modular construction ; Nonlinearity</subject><ispartof>Doklady. Mathematics, 2020-07, Vol.102 (1), p.283-287</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</citedby><cites>FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562420040146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562420040146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nefedov, N. N.</creatorcontrib><creatorcontrib>Rudenko, O. V.</creatorcontrib><title>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.</description><subject>Amplification</subject><subject>Boundary value problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular construction</subject><subject>Nonlinearity</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhujiYj-AO-aeOu039sugYCaoMSI10vZOikZ7WjXEP69hZl4Ybxqe87znJO-ANxi9IAxZY8fGAnGBWEEIYYwE2dggDnFSUYFOY_32E6O_Utw5f0mQjySAxAWBnZrBV9tp625h6Nt2-hal7J_SlPBcWP3SWihreHMWdN5qA0cB_elnE-Wh1bB6S6ceA_3ulvD9yArFwvlSX-1VWikg2_WNNoo6XR3uAYXtWy8uvk5h-BzNl1OnpP54ullMponJcWiS9Iqz2uJ0xUv2UpkaZ5yyTBTghKBEKZUorzMVlxltKwYomXKVVQUwxzF_2Z0CO76ua2zu6B8V2xscCauLEgMAKOMEBIp3FOls947VRet01vpDgVGxTHd4k-60SG94yNrYhS_k_-XvgHS53qN</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Nefedov, N. N.</creator><creator>Rudenko, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</title><author>Nefedov, N. N. ; Rudenko, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Boundary value problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular construction</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nefedov, N. N.</creatorcontrib><creatorcontrib>Rudenko, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nefedov, N. N.</au><au>Rudenko, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>102</volume><issue>1</issue><spage>283</spage><epage>287</epage><pages>283-287</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562420040146</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5624 |
ispartof | Doklady. Mathematics, 2020-07, Vol.102 (1), p.283-287 |
issn | 1064-5624 1531-8362 |
language | eng |
recordid | cdi_proquest_journals_2452108222 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amplification Boundary value problems Mathematics Mathematics and Statistics Modular construction Nonlinearity |
title | On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Motion,%20Amplification,%20and%20Blow-up%20of%20Fronts%20in%20Burgers-Type%20Equations%20with%20Quadratic%20and%20Modular%20Nonlinearity&rft.jtitle=Doklady.%20Mathematics&rft.au=Nefedov,%20N.%20N.&rft.date=2020-07-01&rft.volume=102&rft.issue=1&rft.spage=283&rft.epage=287&rft.pages=283-287&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562420040146&rft_dat=%3Cproquest_cross%3E2452108222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452108222&rft_id=info:pmid/&rfr_iscdi=true |