On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity

A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2020-07, Vol.102 (1), p.283-287
Hauptverfasser: Nefedov, N. N., Rudenko, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue 1
container_start_page 283
container_title Doklady. Mathematics
container_volume 102
creator Nefedov, N. N.
Rudenko, O. V.
description A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.
doi_str_mv 10.1134/S1064562420040146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2452108222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452108222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujiYj-AO-aeOu039sugYCaoMSI10vZOikZ7WjXEP69hZl4Ybxqe87znJO-ANxi9IAxZY8fGAnGBWEEIYYwE2dggDnFSUYFOY_32E6O_Utw5f0mQjySAxAWBnZrBV9tp625h6Nt2-hal7J_SlPBcWP3SWihreHMWdN5qA0cB_elnE-Wh1bB6S6ceA_3ulvD9yArFwvlSX-1VWikg2_WNNoo6XR3uAYXtWy8uvk5h-BzNl1OnpP54ullMponJcWiS9Iqz2uJ0xUv2UpkaZ5yyTBTghKBEKZUorzMVlxltKwYomXKVVQUwxzF_2Z0CO76ua2zu6B8V2xscCauLEgMAKOMEBIp3FOls947VRet01vpDgVGxTHd4k-60SG94yNrYhS_k_-XvgHS53qN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452108222</pqid></control><display><type>article</type><title>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nefedov, N. N. ; Rudenko, O. V.</creator><creatorcontrib>Nefedov, N. N. ; Rudenko, O. V.</creatorcontrib><description>A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.</description><identifier>ISSN: 1064-5624</identifier><identifier>EISSN: 1531-8362</identifier><identifier>DOI: 10.1134/S1064562420040146</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplification ; Boundary value problems ; Mathematics ; Mathematics and Statistics ; Modular construction ; Nonlinearity</subject><ispartof>Doklady. Mathematics, 2020-07, Vol.102 (1), p.283-287</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</citedby><cites>FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064562420040146$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064562420040146$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nefedov, N. N.</creatorcontrib><creatorcontrib>Rudenko, O. V.</creatorcontrib><title>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</title><title>Doklady. Mathematics</title><addtitle>Dokl. Math</addtitle><description>A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.</description><subject>Amplification</subject><subject>Boundary value problems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modular construction</subject><subject>Nonlinearity</subject><issn>1064-5624</issn><issn>1531-8362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhujiYj-AO-aeOu039sugYCaoMSI10vZOikZ7WjXEP69hZl4Ybxqe87znJO-ANxi9IAxZY8fGAnGBWEEIYYwE2dggDnFSUYFOY_32E6O_Utw5f0mQjySAxAWBnZrBV9tp625h6Nt2-hal7J_SlPBcWP3SWihreHMWdN5qA0cB_elnE-Wh1bB6S6ceA_3ulvD9yArFwvlSX-1VWikg2_WNNoo6XR3uAYXtWy8uvk5h-BzNl1OnpP54ullMponJcWiS9Iqz2uJ0xUv2UpkaZ5yyTBTghKBEKZUorzMVlxltKwYomXKVVQUwxzF_2Z0CO76ua2zu6B8V2xscCauLEgMAKOMEBIp3FOls947VRet01vpDgVGxTHd4k-60SG94yNrYhS_k_-XvgHS53qN</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Nefedov, N. N.</creator><creator>Rudenko, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200701</creationdate><title>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</title><author>Nefedov, N. N. ; Rudenko, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7d99fa17b5c4b687975a414e632600133a09c8b5e83cd403c75ed99e415006483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplification</topic><topic>Boundary value problems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modular construction</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nefedov, N. N.</creatorcontrib><creatorcontrib>Rudenko, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nefedov, N. N.</au><au>Rudenko, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity</atitle><jtitle>Doklady. Mathematics</jtitle><stitle>Dokl. Math</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>102</volume><issue>1</issue><spage>283</spage><epage>287</epage><pages>283-287</pages><issn>1064-5624</issn><eissn>1531-8362</eissn><abstract>A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064562420040146</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5624
ispartof Doklady. Mathematics, 2020-07, Vol.102 (1), p.283-287
issn 1064-5624
1531-8362
language eng
recordid cdi_proquest_journals_2452108222
source SpringerLink Journals - AutoHoldings
subjects Amplification
Boundary value problems
Mathematics
Mathematics and Statistics
Modular construction
Nonlinearity
title On the Motion, Amplification, and Blow-up of Fronts in Burgers-Type Equations with Quadratic and Modular Nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A10%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Motion,%20Amplification,%20and%20Blow-up%20of%20Fronts%20in%20Burgers-Type%20Equations%20with%20Quadratic%20and%20Modular%20Nonlinearity&rft.jtitle=Doklady.%20Mathematics&rft.au=Nefedov,%20N.%20N.&rft.date=2020-07-01&rft.volume=102&rft.issue=1&rft.spage=283&rft.epage=287&rft.pages=283-287&rft.issn=1064-5624&rft.eissn=1531-8362&rft_id=info:doi/10.1134/S1064562420040146&rft_dat=%3Cproquest_cross%3E2452108222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452108222&rft_id=info:pmid/&rfr_iscdi=true