Resolving the Hubble tension with new early dark energy

New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2020-09, Vol.102 (6), p.1, Article 063527
Hauptverfasser: Niedermann, Florian, Sloth, Martin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1
container_title Physical review. D
container_volume 102
creator Niedermann, Florian
Sloth, Martin S.
description New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km   s−1   Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.
doi_str_mv 10.1103/PhysRevD.102.063527
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451924287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451924287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</originalsourceid><addsrcrecordid>eNo9kFtLw0AUhBdRsNT-Al8WfE49e_bWPEq9VCgoRZ-XTXLSpsak7qYt-fdGqj7NMAwz8DF2LWAqBMjb100fV3S4nwrAKRip0Z6xESoLCQCm5_9ewCWbxLiFwRpIrRAjZlcU2_pQNWvebYgv9llWE--oiVXb8GPVbXhDR04-1D0vfPjg1FBY91fsovR1pMmvjtn748PbfJEsX56e53fLJJeIXVJYASVkSFDm-Ux5qctSEng0AgtIlc9nOShNpVYGrPGZpMJk3otMaoOg5ZjdnHZ3of3aU-zctt2HZrh0qLRIUeHMDi15auWhjTFQ6Xah-vShdwLcDyT3B2kI0J0gyW_OQFrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451924287</pqid></control><display><type>article</type><title>Resolving the Hubble tension with new early dark energy</title><source>American Physical Society Journals</source><creator>Niedermann, Florian ; Sloth, Martin S.</creator><creatorcontrib>Niedermann, Florian ; Sloth, Martin S.</creatorcontrib><description>New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km   s−1   Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.063527</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomical models ; Big Bang theory ; Coalescing ; Cosmic microwave background ; Cosmology ; Dark energy ; Gravitational waves ; Percolation ; Phase transitions ; Pulsars ; Scalars ; Supernovae ; Universe</subject><ispartof>Physical review. D, 2020-09, Vol.102 (6), p.1, Article 063527</ispartof><rights>Copyright American Physical Society Sep 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</citedby><cites>FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</cites><orcidid>0000-0002-4653-5671 ; 0000-0001-8972-9065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Niedermann, Florian</creatorcontrib><creatorcontrib>Sloth, Martin S.</creatorcontrib><title>Resolving the Hubble tension with new early dark energy</title><title>Physical review. D</title><description>New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km   s−1   Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.</description><subject>Astronomical models</subject><subject>Big Bang theory</subject><subject>Coalescing</subject><subject>Cosmic microwave background</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Gravitational waves</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Pulsars</subject><subject>Scalars</subject><subject>Supernovae</subject><subject>Universe</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AUhBdRsNT-Al8WfE49e_bWPEq9VCgoRZ-XTXLSpsak7qYt-fdGqj7NMAwz8DF2LWAqBMjb100fV3S4nwrAKRip0Z6xESoLCQCm5_9ewCWbxLiFwRpIrRAjZlcU2_pQNWvebYgv9llWE--oiVXb8GPVbXhDR04-1D0vfPjg1FBY91fsovR1pMmvjtn748PbfJEsX56e53fLJJeIXVJYASVkSFDm-Ux5qctSEng0AgtIlc9nOShNpVYGrPGZpMJk3otMaoOg5ZjdnHZ3of3aU-zctt2HZrh0qLRIUeHMDi15auWhjTFQ6Xah-vShdwLcDyT3B2kI0J0gyW_OQFrz</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Niedermann, Florian</creator><creator>Sloth, Martin S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4653-5671</orcidid><orcidid>https://orcid.org/0000-0001-8972-9065</orcidid></search><sort><creationdate>20200923</creationdate><title>Resolving the Hubble tension with new early dark energy</title><author>Niedermann, Florian ; Sloth, Martin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Big Bang theory</topic><topic>Coalescing</topic><topic>Cosmic microwave background</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Gravitational waves</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Pulsars</topic><topic>Scalars</topic><topic>Supernovae</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedermann, Florian</creatorcontrib><creatorcontrib>Sloth, Martin S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedermann, Florian</au><au>Sloth, Martin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the Hubble tension with new early dark energy</atitle><jtitle>Physical review. D</jtitle><date>2020-09-23</date><risdate>2020</risdate><volume>102</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>063527</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km   s−1   Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.063527</doi><orcidid>https://orcid.org/0000-0002-4653-5671</orcidid><orcidid>https://orcid.org/0000-0001-8972-9065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2020-09, Vol.102 (6), p.1, Article 063527
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2451924287
source American Physical Society Journals
subjects Astronomical models
Big Bang theory
Coalescing
Cosmic microwave background
Cosmology
Dark energy
Gravitational waves
Percolation
Phase transitions
Pulsars
Scalars
Supernovae
Universe
title Resolving the Hubble tension with new early dark energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20Hubble%20tension%20with%20new%20early%20dark%20energy&rft.jtitle=Physical%20review.%20D&rft.au=Niedermann,%20Florian&rft.date=2020-09-23&rft.volume=102&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=063527&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.063527&rft_dat=%3Cproquest_cross%3E2451924287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451924287&rft_id=info:pmid/&rfr_iscdi=true