Resolving the Hubble tension with new early dark energy
New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent loca...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-09, Vol.102 (6), p.1, Article 063527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 102 |
creator | Niedermann, Florian Sloth, Martin S. |
description | New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km s−1 Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance. |
doi_str_mv | 10.1103/PhysRevD.102.063527 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451924287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451924287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</originalsourceid><addsrcrecordid>eNo9kFtLw0AUhBdRsNT-Al8WfE49e_bWPEq9VCgoRZ-XTXLSpsak7qYt-fdGqj7NMAwz8DF2LWAqBMjb100fV3S4nwrAKRip0Z6xESoLCQCm5_9ewCWbxLiFwRpIrRAjZlcU2_pQNWvebYgv9llWE--oiVXb8GPVbXhDR04-1D0vfPjg1FBY91fsovR1pMmvjtn748PbfJEsX56e53fLJJeIXVJYASVkSFDm-Ux5qctSEng0AgtIlc9nOShNpVYGrPGZpMJk3otMaoOg5ZjdnHZ3of3aU-zctt2HZrh0qLRIUeHMDi15auWhjTFQ6Xah-vShdwLcDyT3B2kI0J0gyW_OQFrz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451924287</pqid></control><display><type>article</type><title>Resolving the Hubble tension with new early dark energy</title><source>American Physical Society Journals</source><creator>Niedermann, Florian ; Sloth, Martin S.</creator><creatorcontrib>Niedermann, Florian ; Sloth, Martin S.</creatorcontrib><description>New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km s−1 Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.102.063527</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomical models ; Big Bang theory ; Coalescing ; Cosmic microwave background ; Cosmology ; Dark energy ; Gravitational waves ; Percolation ; Phase transitions ; Pulsars ; Scalars ; Supernovae ; Universe</subject><ispartof>Physical review. D, 2020-09, Vol.102 (6), p.1, Article 063527</ispartof><rights>Copyright American Physical Society Sep 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</citedby><cites>FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</cites><orcidid>0000-0002-4653-5671 ; 0000-0001-8972-9065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Niedermann, Florian</creatorcontrib><creatorcontrib>Sloth, Martin S.</creatorcontrib><title>Resolving the Hubble tension with new early dark energy</title><title>Physical review. D</title><description>New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km s−1 Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.</description><subject>Astronomical models</subject><subject>Big Bang theory</subject><subject>Coalescing</subject><subject>Cosmic microwave background</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Gravitational waves</subject><subject>Percolation</subject><subject>Phase transitions</subject><subject>Pulsars</subject><subject>Scalars</subject><subject>Supernovae</subject><subject>Universe</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AUhBdRsNT-Al8WfE49e_bWPEq9VCgoRZ-XTXLSpsak7qYt-fdGqj7NMAwz8DF2LWAqBMjb100fV3S4nwrAKRip0Z6xESoLCQCm5_9ewCWbxLiFwRpIrRAjZlcU2_pQNWvebYgv9llWE--oiVXb8GPVbXhDR04-1D0vfPjg1FBY91fsovR1pMmvjtn748PbfJEsX56e53fLJJeIXVJYASVkSFDm-Ux5qctSEng0AgtIlc9nOShNpVYGrPGZpMJk3otMaoOg5ZjdnHZ3of3aU-zctt2HZrh0qLRIUeHMDi15auWhjTFQ6Xah-vShdwLcDyT3B2kI0J0gyW_OQFrz</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Niedermann, Florian</creator><creator>Sloth, Martin S.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4653-5671</orcidid><orcidid>https://orcid.org/0000-0001-8972-9065</orcidid></search><sort><creationdate>20200923</creationdate><title>Resolving the Hubble tension with new early dark energy</title><author>Niedermann, Florian ; Sloth, Martin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d710f0b2e0fcc84a35ff3e0a2612d094ac8c045ef546076ab3ed6baa1b3562053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Big Bang theory</topic><topic>Coalescing</topic><topic>Cosmic microwave background</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Gravitational waves</topic><topic>Percolation</topic><topic>Phase transitions</topic><topic>Pulsars</topic><topic>Scalars</topic><topic>Supernovae</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niedermann, Florian</creatorcontrib><creatorcontrib>Sloth, Martin S.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niedermann, Florian</au><au>Sloth, Martin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the Hubble tension with new early dark energy</atitle><jtitle>Physical review. D</jtitle><date>2020-09-23</date><risdate>2020</risdate><volume>102</volume><issue>6</issue><spage>1</spage><pages>1-</pages><artnum>063527</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>New early dark energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [F. Niedermann and M. S. Sloth, New early dark energy]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming Λ CDM . We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations, and SN data, we report ... km s−1 Mpc−1 (68% C.L.) without the local measurement of the Hubble parameter, bringing the tension down to 2.5 σ . Including the local input, we find H0 = 71.4 ± 1.0 km s−1 Mpc−1 (68% C.L.) and strong evidence for a nonvanishing NEDE component with a ≃ 4σ significance.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.102.063527</doi><orcidid>https://orcid.org/0000-0002-4653-5671</orcidid><orcidid>https://orcid.org/0000-0001-8972-9065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-09, Vol.102 (6), p.1, Article 063527 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2451924287 |
source | American Physical Society Journals |
subjects | Astronomical models Big Bang theory Coalescing Cosmic microwave background Cosmology Dark energy Gravitational waves Percolation Phase transitions Pulsars Scalars Supernovae Universe |
title | Resolving the Hubble tension with new early dark energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20Hubble%20tension%20with%20new%20early%20dark%20energy&rft.jtitle=Physical%20review.%20D&rft.au=Niedermann,%20Florian&rft.date=2020-09-23&rft.volume=102&rft.issue=6&rft.spage=1&rft.pages=1-&rft.artnum=063527&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.102.063527&rft_dat=%3Cproquest_cross%3E2451924287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451924287&rft_id=info:pmid/&rfr_iscdi=true |