Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide

Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-09, Vol.102 (10), p.1, Article 104417
Hauptverfasser: Fan, L.-Y., Tang, F., Meng, W. Z., Zhao, W., Zhang, L., Han, Z. D., Qian, B., Jiang, X.-F., Zhang, X. M., Fang, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title Physical review. B
container_volume 102
creator Fan, L.-Y.
Tang, F.
Meng, W. Z.
Zhao, W.
Zhang, L.
Han, Z. D.
Qian, B.
Jiang, X.-F.
Zhang, X. M.
Fang, Y.
description Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.
doi_str_mv 10.1103/PhysRevB.102.104417
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451923028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451923028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeA5635t5vNsRa1QkERPS_ZZNamNJuaZMV-e1dqPQwzvHnzBn4IXVMyp5Tw25fNIb3C192cEjaWEFSeoQkTlSqUqtT5_1ySSzRLaUsIoRVRkqgJMovepZBj2DuDdW8xfOcIHrDXHz3kECG5lHVvALse581pMboTeOch6x0246GzOgOG2LrBYx_60Lrkh7xxFq7QRad3CWZ_fYreH-7flqti_fz4tFysC8OkzIUVllJjS0lKa2tqwdacKdW13JZcm9rUggupNG_bsmvlqFWUcspqbQh0suVTdHPM3cfwOUDKzTYMsR9fNkyUVDFOWD26-NFlYkgpQtfso_M6HhpKml-gzQnoKLDmCJT_AHMwbRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451923028</pqid></control><display><type>article</type><title>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</title><source>American Physical Society Journals</source><creator>Fan, L.-Y. ; Tang, F. ; Meng, W. Z. ; Zhao, W. ; Zhang, L. ; Han, Z. D. ; Qian, B. ; Jiang, X.-F. ; Zhang, X. M. ; Fang, Y.</creator><creatorcontrib>Fan, L.-Y. ; Tang, F. ; Meng, W. Z. ; Zhao, W. ; Zhang, L. ; Han, Z. D. ; Qian, B. ; Jiang, X.-F. ; Zhang, X. M. ; Fang, Y.</creatorcontrib><description>Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.104417</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Alternating current ; Carrier mobility ; Crystal growth ; Demagnetization ; Electrical properties ; Erbium ; Fermi surfaces ; Ground state ; Holes (electron deficiencies) ; Low temperature ; Magnetic anisotropy ; Magnetic properties ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Rare earth elements ; Scattering ; Single crystals ; Topology</subject><ispartof>Physical review. B, 2020-09, Vol.102 (10), p.1, Article 104417</ispartof><rights>Copyright American Physical Society Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</citedby><cites>FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Fan, L.-Y.</creatorcontrib><creatorcontrib>Tang, F.</creatorcontrib><creatorcontrib>Meng, W. Z.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Han, Z. D.</creatorcontrib><creatorcontrib>Qian, B.</creatorcontrib><creatorcontrib>Jiang, X.-F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Fang, Y.</creatorcontrib><title>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</title><title>Physical review. B</title><description>Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.</description><subject>Alternating current</subject><subject>Carrier mobility</subject><subject>Crystal growth</subject><subject>Demagnetization</subject><subject>Electrical properties</subject><subject>Erbium</subject><subject>Fermi surfaces</subject><subject>Ground state</subject><subject>Holes (electron deficiencies)</subject><subject>Low temperature</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Rare earth elements</subject><subject>Scattering</subject><subject>Single crystals</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeA5635t5vNsRa1QkERPS_ZZNamNJuaZMV-e1dqPQwzvHnzBn4IXVMyp5Tw25fNIb3C192cEjaWEFSeoQkTlSqUqtT5_1ySSzRLaUsIoRVRkqgJMovepZBj2DuDdW8xfOcIHrDXHz3kECG5lHVvALse581pMboTeOch6x0246GzOgOG2LrBYx_60Lrkh7xxFq7QRad3CWZ_fYreH-7flqti_fz4tFysC8OkzIUVllJjS0lKa2tqwdacKdW13JZcm9rUggupNG_bsmvlqFWUcspqbQh0suVTdHPM3cfwOUDKzTYMsR9fNkyUVDFOWD26-NFlYkgpQtfso_M6HhpKml-gzQnoKLDmCJT_AHMwbRc</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Fan, L.-Y.</creator><creator>Tang, F.</creator><creator>Meng, W. Z.</creator><creator>Zhao, W.</creator><creator>Zhang, L.</creator><creator>Han, Z. D.</creator><creator>Qian, B.</creator><creator>Jiang, X.-F.</creator><creator>Zhang, X. M.</creator><creator>Fang, Y.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200914</creationdate><title>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</title><author>Fan, L.-Y. ; Tang, F. ; Meng, W. Z. ; Zhao, W. ; Zhang, L. ; Han, Z. D. ; Qian, B. ; Jiang, X.-F. ; Zhang, X. M. ; Fang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternating current</topic><topic>Carrier mobility</topic><topic>Crystal growth</topic><topic>Demagnetization</topic><topic>Electrical properties</topic><topic>Erbium</topic><topic>Fermi surfaces</topic><topic>Ground state</topic><topic>Holes (electron deficiencies)</topic><topic>Low temperature</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Rare earth elements</topic><topic>Scattering</topic><topic>Single crystals</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, L.-Y.</creatorcontrib><creatorcontrib>Tang, F.</creatorcontrib><creatorcontrib>Meng, W. Z.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Han, Z. D.</creatorcontrib><creatorcontrib>Qian, B.</creatorcontrib><creatorcontrib>Jiang, X.-F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Fang, Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, L.-Y.</au><au>Tang, F.</au><au>Meng, W. Z.</au><au>Zhao, W.</au><au>Zhang, L.</au><au>Han, Z. D.</au><au>Qian, B.</au><au>Jiang, X.-F.</au><au>Zhang, X. M.</au><au>Fang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</atitle><jtitle>Physical review. B</jtitle><date>2020-09-14</date><risdate>2020</risdate><volume>102</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>104417</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.104417</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-09, Vol.102 (10), p.1, Article 104417
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2451923028
source American Physical Society Journals
subjects Alternating current
Carrier mobility
Crystal growth
Demagnetization
Electrical properties
Erbium
Fermi surfaces
Ground state
Holes (electron deficiencies)
Low temperature
Magnetic anisotropy
Magnetic properties
Magnetism
Magnetoresistance
Magnetoresistivity
Rare earth elements
Scattering
Single crystals
Topology
title Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20and%20extreme%20magnetoresistance%20in%20the%20magnetic%20semimetal%20candidate%20erbium%20monobismuthide&rft.jtitle=Physical%20review.%20B&rft.au=Fan,%20L.-Y.&rft.date=2020-09-14&rft.volume=102&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=104417&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.104417&rft_dat=%3Cproquest_cross%3E2451923028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451923028&rft_id=info:pmid/&rfr_iscdi=true