Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide
Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-09, Vol.102 (10), p.1, Article 104417 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 102 |
creator | Fan, L.-Y. Tang, F. Meng, W. Z. Zhao, W. Zhang, L. Han, Z. D. Qian, B. Jiang, X.-F. Zhang, X. M. Fang, Y. |
description | Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed. |
doi_str_mv | 10.1103/PhysRevB.102.104417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451923028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451923028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWGo_gZeA5635t5vNsRa1QkERPS_ZZNamNJuaZMV-e1dqPQwzvHnzBn4IXVMyp5Tw25fNIb3C192cEjaWEFSeoQkTlSqUqtT5_1ySSzRLaUsIoRVRkqgJMovepZBj2DuDdW8xfOcIHrDXHz3kECG5lHVvALse581pMboTeOch6x0246GzOgOG2LrBYx_60Lrkh7xxFq7QRad3CWZ_fYreH-7flqti_fz4tFysC8OkzIUVllJjS0lKa2tqwdacKdW13JZcm9rUggupNG_bsmvlqFWUcspqbQh0suVTdHPM3cfwOUDKzTYMsR9fNkyUVDFOWD26-NFlYkgpQtfso_M6HhpKml-gzQnoKLDmCJT_AHMwbRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451923028</pqid></control><display><type>article</type><title>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</title><source>American Physical Society Journals</source><creator>Fan, L.-Y. ; Tang, F. ; Meng, W. Z. ; Zhao, W. ; Zhang, L. ; Han, Z. D. ; Qian, B. ; Jiang, X.-F. ; Zhang, X. M. ; Fang, Y.</creator><creatorcontrib>Fan, L.-Y. ; Tang, F. ; Meng, W. Z. ; Zhao, W. ; Zhang, L. ; Han, Z. D. ; Qian, B. ; Jiang, X.-F. ; Zhang, X. M. ; Fang, Y.</creatorcontrib><description>Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.104417</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Alternating current ; Carrier mobility ; Crystal growth ; Demagnetization ; Electrical properties ; Erbium ; Fermi surfaces ; Ground state ; Holes (electron deficiencies) ; Low temperature ; Magnetic anisotropy ; Magnetic properties ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Rare earth elements ; Scattering ; Single crystals ; Topology</subject><ispartof>Physical review. B, 2020-09, Vol.102 (10), p.1, Article 104417</ispartof><rights>Copyright American Physical Society Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</citedby><cites>FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids></links><search><creatorcontrib>Fan, L.-Y.</creatorcontrib><creatorcontrib>Tang, F.</creatorcontrib><creatorcontrib>Meng, W. Z.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Han, Z. D.</creatorcontrib><creatorcontrib>Qian, B.</creatorcontrib><creatorcontrib>Jiang, X.-F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Fang, Y.</creatorcontrib><title>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</title><title>Physical review. B</title><description>Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.</description><subject>Alternating current</subject><subject>Carrier mobility</subject><subject>Crystal growth</subject><subject>Demagnetization</subject><subject>Electrical properties</subject><subject>Erbium</subject><subject>Fermi surfaces</subject><subject>Ground state</subject><subject>Holes (electron deficiencies)</subject><subject>Low temperature</subject><subject>Magnetic anisotropy</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Rare earth elements</subject><subject>Scattering</subject><subject>Single crystals</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWGo_gZeA5635t5vNsRa1QkERPS_ZZNamNJuaZMV-e1dqPQwzvHnzBn4IXVMyp5Tw25fNIb3C192cEjaWEFSeoQkTlSqUqtT5_1ySSzRLaUsIoRVRkqgJMovepZBj2DuDdW8xfOcIHrDXHz3kECG5lHVvALse581pMboTeOch6x0246GzOgOG2LrBYx_60Lrkh7xxFq7QRad3CWZ_fYreH-7flqti_fz4tFysC8OkzIUVllJjS0lKa2tqwdacKdW13JZcm9rUggupNG_bsmvlqFWUcspqbQh0suVTdHPM3cfwOUDKzTYMsR9fNkyUVDFOWD26-NFlYkgpQtfso_M6HhpKml-gzQnoKLDmCJT_AHMwbRc</recordid><startdate>20200914</startdate><enddate>20200914</enddate><creator>Fan, L.-Y.</creator><creator>Tang, F.</creator><creator>Meng, W. Z.</creator><creator>Zhao, W.</creator><creator>Zhang, L.</creator><creator>Han, Z. D.</creator><creator>Qian, B.</creator><creator>Jiang, X.-F.</creator><creator>Zhang, X. M.</creator><creator>Fang, Y.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20200914</creationdate><title>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</title><author>Fan, L.-Y. ; Tang, F. ; Meng, W. Z. ; Zhao, W. ; Zhang, L. ; Han, Z. D. ; Qian, B. ; Jiang, X.-F. ; Zhang, X. M. ; Fang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-d4d11cd5705dd81ded83299fb3d53ac8c843479a3bb5fb753a6113128ac0ef7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternating current</topic><topic>Carrier mobility</topic><topic>Crystal growth</topic><topic>Demagnetization</topic><topic>Electrical properties</topic><topic>Erbium</topic><topic>Fermi surfaces</topic><topic>Ground state</topic><topic>Holes (electron deficiencies)</topic><topic>Low temperature</topic><topic>Magnetic anisotropy</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Rare earth elements</topic><topic>Scattering</topic><topic>Single crystals</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, L.-Y.</creatorcontrib><creatorcontrib>Tang, F.</creatorcontrib><creatorcontrib>Meng, W. Z.</creatorcontrib><creatorcontrib>Zhao, W.</creatorcontrib><creatorcontrib>Zhang, L.</creatorcontrib><creatorcontrib>Han, Z. D.</creatorcontrib><creatorcontrib>Qian, B.</creatorcontrib><creatorcontrib>Jiang, X.-F.</creatorcontrib><creatorcontrib>Zhang, X. M.</creatorcontrib><creatorcontrib>Fang, Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, L.-Y.</au><au>Tang, F.</au><au>Meng, W. Z.</au><au>Zhao, W.</au><au>Zhang, L.</au><au>Han, Z. D.</au><au>Qian, B.</au><au>Jiang, X.-F.</au><au>Zhang, X. M.</au><au>Fang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide</atitle><jtitle>Physical review. B</jtitle><date>2020-09-14</date><risdate>2020</risdate><volume>102</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>104417</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Rare-earth monopnictides display rich physical behaviors, featuring most notably spin and orbital orders in their ground state. Here, we grow ErBi single crystal and study its magnetic, thermal, and electrical properties. An analysis of the magnetic entropy and magnetization indicates that the weak magnetic anisotropy in ErBi possibly derives from the mixing effect, namely the anisotropic ground state of Er3+(4f11) mingles with the isotropic excited state through exchange interaction. At low temperature, an extremely large magnetoresistance ( ∼ 10 4 % ) with a parabolic magnetic-field dependence is observed, which can be ascribed to the nearly perfect electron-hole compensation and ultrahigh carrier mobility. When the magnetic field is rotated in the ab(ac) plane and the current flows in the b axis, the angular magnetoresistance in ErBi shows a twofold (fourfold) symmetry. Similar case has been observed in LaBi where the anisotropic Fermi surface dominates the low-temperature transport. Our theoretical calculation suggests that near the Fermi level ErBi shares similarity with LaBi in the electronic band structures. These findings indicate that the angular magnetoresistance of ErBi could be mainly determined by its anisotropic Fermi surface topology. Besides, contributions from several other possibilities, including the spin-dependent scattering, spin-orbit scattering, and demagnetization correlation to the angular magnetoresistance of ErBi are also discussed.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.104417</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-09, Vol.102 (10), p.1, Article 104417 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2451923028 |
source | American Physical Society Journals |
subjects | Alternating current Carrier mobility Crystal growth Demagnetization Electrical properties Erbium Fermi surfaces Ground state Holes (electron deficiencies) Low temperature Magnetic anisotropy Magnetic properties Magnetism Magnetoresistance Magnetoresistivity Rare earth elements Scattering Single crystals Topology |
title | Anisotropic and extreme magnetoresistance in the magnetic semimetal candidate erbium monobismuthide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20and%20extreme%20magnetoresistance%20in%20the%20magnetic%20semimetal%20candidate%20erbium%20monobismuthide&rft.jtitle=Physical%20review.%20B&rft.au=Fan,%20L.-Y.&rft.date=2020-09-14&rft.volume=102&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=104417&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.104417&rft_dat=%3Cproquest_cross%3E2451923028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451923028&rft_id=info:pmid/&rfr_iscdi=true |