Hydrothermal Fabrication of Ag-Decorated MoSe₂/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing

This paper demonstrates a H 2 S gas sensor based on Ag-MoSe 2 /reduced graphene oxide (rGO) ternary composite material via hydrothermal method was studied. The microstructures, morphologies and compositional characteristics of the Ag-MoSe 2 /rGO nanocomposite were completely tested by X-ray diffract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-11, Vol.20 (22), p.13262-13268
Hauptverfasser: Luo, Yuwei, Zhang, Dongzhi, Fan, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13268
container_issue 22
container_start_page 13262
container_title IEEE sensors journal
container_volume 20
creator Luo, Yuwei
Zhang, Dongzhi
Fan, Xin
description This paper demonstrates a H 2 S gas sensor based on Ag-MoSe 2 /reduced graphene oxide (rGO) ternary composite material via hydrothermal method was studied. The microstructures, morphologies and compositional characteristics of the Ag-MoSe 2 /rGO nanocomposite were completely tested by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). By exposing it to various concentrations of H 2 S gas from 0.1 ppm to 30 ppm at room temperature, the gas sensing properties of the Ag-MoSe 2 /rGO sensor were examined. The experimental data indicated that the H 2 S gas sensor has a high response, quite response-recovery performances, excellent selectivity and reproducibility toward H 2 S gas. Moreover, the work also investigates the effect of Ag loading in the compound on the H 2 S gas sensing. The sensing mechanism of the Ag-MoSe 2 /rGO film sensor can be attributed to the modulation of potential barrier with electron transfer and the synergistic effect of the ternary compound nanostructures. This paper shows that in diverse applications, the prepared Ag-MoSe 2 /rGO composite is a potential candidate for detecting H 2 S gas at room temperature.
doi_str_mv 10.1109/JSEN.2020.3006983
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2451898610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133314</ieee_id><sourcerecordid>2451898610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-3f5d414d3f4a095551ed69de09aa7ab22e9b76a9770c14e24c112de1c1e95bdc3</originalsourceid><addsrcrecordid>eNo9kM9OwkAQhxujiYg-gPGyiefCzv6h3SNBAQ1KIph4a5bdKZRAF3dLIlce1SexDcTTzCTfbzLzRdE90A4AVd3X2fN7h1FGO5zSnkr5RdQCKdMYEpFeNj2nseDJ13V0E8KaUlCJTFrRZnyw3lUr9Fu9IUO98IXRVeFK4nLSX8ZPaJzXFVry5mb4ezx2P9DuTT2PvN6tsEQy_Skskjn6UvsDGR_qFZbkzpNxjc_ISAcywzIU5fI2usr1JuDdubajz-HzfDCOJ9PRy6A_iQ1jvIp5Lq0AYXkuNFVSSkDbUxap0jrRC8ZQLZKeVklCDQhkwgAwi2AAlVxYw9vR42nvzrvvPYYqW7t9fd4mZExISFXaA1pTcKKMdyF4zLOdL7b1DxnQrJGaNVKzRmp2llpnHk6ZAhH_eQWccxD8DybYdIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451898610</pqid></control><display><type>article</type><title>Hydrothermal Fabrication of Ag-Decorated MoSe₂/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Yuwei ; Zhang, Dongzhi ; Fan, Xin</creator><creatorcontrib>Luo, Yuwei ; Zhang, Dongzhi ; Fan, Xin</creatorcontrib><description>This paper demonstrates a H 2 S gas sensor based on Ag-MoSe 2 /reduced graphene oxide (rGO) ternary composite material via hydrothermal method was studied. The microstructures, morphologies and compositional characteristics of the Ag-MoSe 2 /rGO nanocomposite were completely tested by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). By exposing it to various concentrations of H 2 S gas from 0.1 ppm to 30 ppm at room temperature, the gas sensing properties of the Ag-MoSe 2 /rGO sensor were examined. The experimental data indicated that the H 2 S gas sensor has a high response, quite response-recovery performances, excellent selectivity and reproducibility toward H 2 S gas. Moreover, the work also investigates the effect of Ag loading in the compound on the H 2 S gas sensing. The sensing mechanism of the Ag-MoSe 2 /rGO film sensor can be attributed to the modulation of potential barrier with electron transfer and the synergistic effect of the ternary compound nanostructures. This paper shows that in diverse applications, the prepared Ag-MoSe 2 /rGO composite is a potential candidate for detecting H 2 S gas at room temperature.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3006983</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical sensors ; Composite materials ; Electron transfer ; Gas detectors ; Gas sensors ; Graphene ; H₂ S gas sensor ; Molybdenum compounds ; Morphology ; MoSe₂ nanoflowers ; Nanocomposites ; Photoelectrons ; Potential barriers ; reduced graphene oxide ; Room temperature ; Selectivity ; sensing mechanism ; Sensor phenomena and characterization ; Sensors ; Silver ; Synergistic effect ; Temperature sensors ; ternary nanostructures ; X ray photoelectron spectroscopy ; X-ray scattering</subject><ispartof>IEEE sensors journal, 2020-11, Vol.20 (22), p.13262-13268</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-3f5d414d3f4a095551ed69de09aa7ab22e9b76a9770c14e24c112de1c1e95bdc3</citedby><cites>FETCH-LOGICAL-c223t-3f5d414d3f4a095551ed69de09aa7ab22e9b76a9770c14e24c112de1c1e95bdc3</cites><orcidid>0000-0001-9238-4176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133314$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9133314$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Yuwei</creatorcontrib><creatorcontrib>Zhang, Dongzhi</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><title>Hydrothermal Fabrication of Ag-Decorated MoSe₂/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper demonstrates a H 2 S gas sensor based on Ag-MoSe 2 /reduced graphene oxide (rGO) ternary composite material via hydrothermal method was studied. The microstructures, morphologies and compositional characteristics of the Ag-MoSe 2 /rGO nanocomposite were completely tested by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). By exposing it to various concentrations of H 2 S gas from 0.1 ppm to 30 ppm at room temperature, the gas sensing properties of the Ag-MoSe 2 /rGO sensor were examined. The experimental data indicated that the H 2 S gas sensor has a high response, quite response-recovery performances, excellent selectivity and reproducibility toward H 2 S gas. Moreover, the work also investigates the effect of Ag loading in the compound on the H 2 S gas sensing. The sensing mechanism of the Ag-MoSe 2 /rGO film sensor can be attributed to the modulation of potential barrier with electron transfer and the synergistic effect of the ternary compound nanostructures. This paper shows that in diverse applications, the prepared Ag-MoSe 2 /rGO composite is a potential candidate for detecting H 2 S gas at room temperature.</description><subject>Chemical sensors</subject><subject>Composite materials</subject><subject>Electron transfer</subject><subject>Gas detectors</subject><subject>Gas sensors</subject><subject>Graphene</subject><subject>H₂ S gas sensor</subject><subject>Molybdenum compounds</subject><subject>Morphology</subject><subject>MoSe₂ nanoflowers</subject><subject>Nanocomposites</subject><subject>Photoelectrons</subject><subject>Potential barriers</subject><subject>reduced graphene oxide</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>sensing mechanism</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Silver</subject><subject>Synergistic effect</subject><subject>Temperature sensors</subject><subject>ternary nanostructures</subject><subject>X ray photoelectron spectroscopy</subject><subject>X-ray scattering</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9OwkAQhxujiYg-gPGyiefCzv6h3SNBAQ1KIph4a5bdKZRAF3dLIlce1SexDcTTzCTfbzLzRdE90A4AVd3X2fN7h1FGO5zSnkr5RdQCKdMYEpFeNj2nseDJ13V0E8KaUlCJTFrRZnyw3lUr9Fu9IUO98IXRVeFK4nLSX8ZPaJzXFVry5mb4ezx2P9DuTT2PvN6tsEQy_Skskjn6UvsDGR_qFZbkzpNxjc_ISAcywzIU5fI2usr1JuDdubajz-HzfDCOJ9PRy6A_iQ1jvIp5Lq0AYXkuNFVSSkDbUxap0jrRC8ZQLZKeVklCDQhkwgAwi2AAlVxYw9vR42nvzrvvPYYqW7t9fd4mZExISFXaA1pTcKKMdyF4zLOdL7b1DxnQrJGaNVKzRmp2llpnHk6ZAhH_eQWccxD8DybYdIs</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Luo, Yuwei</creator><creator>Zhang, Dongzhi</creator><creator>Fan, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9238-4176</orcidid></search><sort><creationdate>20201115</creationdate><title>Hydrothermal Fabrication of Ag-Decorated MoSe₂/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing</title><author>Luo, Yuwei ; Zhang, Dongzhi ; Fan, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-3f5d414d3f4a095551ed69de09aa7ab22e9b76a9770c14e24c112de1c1e95bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical sensors</topic><topic>Composite materials</topic><topic>Electron transfer</topic><topic>Gas detectors</topic><topic>Gas sensors</topic><topic>Graphene</topic><topic>H₂ S gas sensor</topic><topic>Molybdenum compounds</topic><topic>Morphology</topic><topic>MoSe₂ nanoflowers</topic><topic>Nanocomposites</topic><topic>Photoelectrons</topic><topic>Potential barriers</topic><topic>reduced graphene oxide</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>sensing mechanism</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Silver</topic><topic>Synergistic effect</topic><topic>Temperature sensors</topic><topic>ternary nanostructures</topic><topic>X ray photoelectron spectroscopy</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yuwei</creatorcontrib><creatorcontrib>Zhang, Dongzhi</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Yuwei</au><au>Zhang, Dongzhi</au><au>Fan, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Fabrication of Ag-Decorated MoSe₂/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-11-15</date><risdate>2020</risdate><volume>20</volume><issue>22</issue><spage>13262</spage><epage>13268</epage><pages>13262-13268</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper demonstrates a H 2 S gas sensor based on Ag-MoSe 2 /reduced graphene oxide (rGO) ternary composite material via hydrothermal method was studied. The microstructures, morphologies and compositional characteristics of the Ag-MoSe 2 /rGO nanocomposite were completely tested by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS). By exposing it to various concentrations of H 2 S gas from 0.1 ppm to 30 ppm at room temperature, the gas sensing properties of the Ag-MoSe 2 /rGO sensor were examined. The experimental data indicated that the H 2 S gas sensor has a high response, quite response-recovery performances, excellent selectivity and reproducibility toward H 2 S gas. Moreover, the work also investigates the effect of Ag loading in the compound on the H 2 S gas sensing. The sensing mechanism of the Ag-MoSe 2 /rGO film sensor can be attributed to the modulation of potential barrier with electron transfer and the synergistic effect of the ternary compound nanostructures. This paper shows that in diverse applications, the prepared Ag-MoSe 2 /rGO composite is a potential candidate for detecting H 2 S gas at room temperature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3006983</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9238-4176</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-11, Vol.20 (22), p.13262-13268
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2451898610
source IEEE Electronic Library (IEL)
subjects Chemical sensors
Composite materials
Electron transfer
Gas detectors
Gas sensors
Graphene
H₂ S gas sensor
Molybdenum compounds
Morphology
MoSe₂ nanoflowers
Nanocomposites
Photoelectrons
Potential barriers
reduced graphene oxide
Room temperature
Selectivity
sensing mechanism
Sensor phenomena and characterization
Sensors
Silver
Synergistic effect
Temperature sensors
ternary nanostructures
X ray photoelectron spectroscopy
X-ray scattering
title Hydrothermal Fabrication of Ag-Decorated MoSe₂/Reduced Graphene Oxide Ternary Hybrid for H₂S Gas Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Fabrication%20of%20Ag-Decorated%20MoSe%E2%82%82/Reduced%20Graphene%20Oxide%20Ternary%20Hybrid%20for%20H%E2%82%82S%20Gas%20Sensing&rft.jtitle=IEEE%20sensors%20journal&rft.au=Luo,%20Yuwei&rft.date=2020-11-15&rft.volume=20&rft.issue=22&rft.spage=13262&rft.epage=13268&rft.pages=13262-13268&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3006983&rft_dat=%3Cproquest_RIE%3E2451898610%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451898610&rft_id=info:pmid/&rft_ieee_id=9133314&rfr_iscdi=true