A Millimetre-Wave Radar-Based Fall Detection Method Using Line Kernel Convolutional Neural Network

Fall accidents are significant threats to the health and life of older people. When a millimetre-wave (mmWave) frequency modulated continuous wave (FMCW) radar is used for fall detection, the selected features for further classification can determine the detection performance. In this paper, a line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-11, Vol.20 (22), p.13364-13370
Hauptverfasser: Wang, Bo, Guo, Liang, Zhang, Hao, Guo, Yong-Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13370
container_issue 22
container_start_page 13364
container_title IEEE sensors journal
container_volume 20
creator Wang, Bo
Guo, Liang
Zhang, Hao
Guo, Yong-Xin
description Fall accidents are significant threats to the health and life of older people. When a millimetre-wave (mmWave) frequency modulated continuous wave (FMCW) radar is used for fall detection, the selected features for further classification can determine the detection performance. In this paper, a line kernel convolutional neural network (LKCNN) is proposed to process the baseband data directly to detect fall motions. This method utilizes the characteristic of a convolutional neural network (CNN) that it can learn to extract useful features during the training process. A data sample generation method is also proposed to generate multiple samples for the training process by utilizing the multiple receiving channels and sufficiently small pulse repetition time (PRT). The experiment results show that the proposed method can detect fall motions with high accuracy, sensitivity and specificity with fewer network parameters and less computation cost, which is meaningful in realizing an all-time indoor fall detection system.
doi_str_mv 10.1109/JSEN.2020.3006918
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2451898544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9133594</ieee_id><sourcerecordid>2451898544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f8015efb04df142123070461dcba060b5c15e86676fc48f4bd25c3c0ef1f77d53</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYp49iOk2UpLa-2SEAFu8hxxpBikmInRfw9Da1Y3ZHm3NHoBMEphQGlkF7cPY3ngwgiGDCAOKXJXtCjQiQhlTzZ72YGIWfy9TA48n4JQFMpZC_Ih2RWWlt-YuMwfFFrJI-qUC68VB4LMlHWkitsUDdlXZEZNu91QRa-rN7ItKyQ3KOr0JJRXa1r23aQsmSOrfuL5rt2H8fBgVHW48ku-8FiMn4e3YTTh-vb0XAa6ihlTWgSoAJNDrwwlEc0YiCBx7TQuYIYcqE36ySOZWw0TwzPi0hopgENNVIWgvWD8-3dlau_WvRNtqxbt_nHZxEXNEkTwfmGoltKu9p7hyZbufJTuZ-MQtapzDqVWacy26ncdM62nRIR__mUMiZSzn4BOmhvUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451898544</pqid></control><display><type>article</type><title>A Millimetre-Wave Radar-Based Fall Detection Method Using Line Kernel Convolutional Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Bo ; Guo, Liang ; Zhang, Hao ; Guo, Yong-Xin</creator><creatorcontrib>Wang, Bo ; Guo, Liang ; Zhang, Hao ; Guo, Yong-Xin</creatorcontrib><description>Fall accidents are significant threats to the health and life of older people. When a millimetre-wave (mmWave) frequency modulated continuous wave (FMCW) radar is used for fall detection, the selected features for further classification can determine the detection performance. In this paper, a line kernel convolutional neural network (LKCNN) is proposed to process the baseband data directly to detect fall motions. This method utilizes the characteristic of a convolutional neural network (CNN) that it can learn to extract useful features during the training process. A data sample generation method is also proposed to generate multiple samples for the training process by utilizing the multiple receiving channels and sufficiently small pulse repetition time (PRT). The experiment results show that the proposed method can detect fall motions with high accuracy, sensitivity and specificity with fewer network parameters and less computation cost, which is meaningful in realizing an all-time indoor fall detection system.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3006918</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Baseband ; Chirp ; Continuous radiation ; Convolutional neural network ; data sample generation ; Fall detection ; Feature extraction ; Kernels ; line convolution kernel ; Millimeter waves ; millimetre-wave radar ; Neural networks ; Parameter sensitivity ; Radar ; Radar antennas ; Radar detection ; Sensors ; Training</subject><ispartof>IEEE sensors journal, 2020-11, Vol.20 (22), p.13364-13370</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f8015efb04df142123070461dcba060b5c15e86676fc48f4bd25c3c0ef1f77d53</citedby><cites>FETCH-LOGICAL-c293t-f8015efb04df142123070461dcba060b5c15e86676fc48f4bd25c3c0ef1f77d53</cites><orcidid>0000-0002-3978-4709 ; 0000-0002-6618-4741 ; 0000-0001-8842-5609 ; 0000-0002-3973-9377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9133594$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9133594$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Guo, Liang</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Guo, Yong-Xin</creatorcontrib><title>A Millimetre-Wave Radar-Based Fall Detection Method Using Line Kernel Convolutional Neural Network</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Fall accidents are significant threats to the health and life of older people. When a millimetre-wave (mmWave) frequency modulated continuous wave (FMCW) radar is used for fall detection, the selected features for further classification can determine the detection performance. In this paper, a line kernel convolutional neural network (LKCNN) is proposed to process the baseband data directly to detect fall motions. This method utilizes the characteristic of a convolutional neural network (CNN) that it can learn to extract useful features during the training process. A data sample generation method is also proposed to generate multiple samples for the training process by utilizing the multiple receiving channels and sufficiently small pulse repetition time (PRT). The experiment results show that the proposed method can detect fall motions with high accuracy, sensitivity and specificity with fewer network parameters and less computation cost, which is meaningful in realizing an all-time indoor fall detection system.</description><subject>Artificial neural networks</subject><subject>Baseband</subject><subject>Chirp</subject><subject>Continuous radiation</subject><subject>Convolutional neural network</subject><subject>data sample generation</subject><subject>Fall detection</subject><subject>Feature extraction</subject><subject>Kernels</subject><subject>line convolution kernel</subject><subject>Millimeter waves</subject><subject>millimetre-wave radar</subject><subject>Neural networks</subject><subject>Parameter sensitivity</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar detection</subject><subject>Sensors</subject><subject>Training</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRSMEEqXwAYiNJdYp49iOk2UpLa-2SEAFu8hxxpBikmInRfw9Da1Y3ZHm3NHoBMEphQGlkF7cPY3ngwgiGDCAOKXJXtCjQiQhlTzZ72YGIWfy9TA48n4JQFMpZC_Ih2RWWlt-YuMwfFFrJI-qUC68VB4LMlHWkitsUDdlXZEZNu91QRa-rN7ItKyQ3KOr0JJRXa1r23aQsmSOrfuL5rt2H8fBgVHW48ku-8FiMn4e3YTTh-vb0XAa6ihlTWgSoAJNDrwwlEc0YiCBx7TQuYIYcqE36ySOZWw0TwzPi0hopgENNVIWgvWD8-3dlau_WvRNtqxbt_nHZxEXNEkTwfmGoltKu9p7hyZbufJTuZ-MQtapzDqVWacy26ncdM62nRIR__mUMiZSzn4BOmhvUQ</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Wang, Bo</creator><creator>Guo, Liang</creator><creator>Zhang, Hao</creator><creator>Guo, Yong-Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3978-4709</orcidid><orcidid>https://orcid.org/0000-0002-6618-4741</orcidid><orcidid>https://orcid.org/0000-0001-8842-5609</orcidid><orcidid>https://orcid.org/0000-0002-3973-9377</orcidid></search><sort><creationdate>20201115</creationdate><title>A Millimetre-Wave Radar-Based Fall Detection Method Using Line Kernel Convolutional Neural Network</title><author>Wang, Bo ; Guo, Liang ; Zhang, Hao ; Guo, Yong-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f8015efb04df142123070461dcba060b5c15e86676fc48f4bd25c3c0ef1f77d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Baseband</topic><topic>Chirp</topic><topic>Continuous radiation</topic><topic>Convolutional neural network</topic><topic>data sample generation</topic><topic>Fall detection</topic><topic>Feature extraction</topic><topic>Kernels</topic><topic>line convolution kernel</topic><topic>Millimeter waves</topic><topic>millimetre-wave radar</topic><topic>Neural networks</topic><topic>Parameter sensitivity</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar detection</topic><topic>Sensors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Guo, Liang</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Guo, Yong-Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Bo</au><au>Guo, Liang</au><au>Zhang, Hao</au><au>Guo, Yong-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Millimetre-Wave Radar-Based Fall Detection Method Using Line Kernel Convolutional Neural Network</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-11-15</date><risdate>2020</risdate><volume>20</volume><issue>22</issue><spage>13364</spage><epage>13370</epage><pages>13364-13370</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Fall accidents are significant threats to the health and life of older people. When a millimetre-wave (mmWave) frequency modulated continuous wave (FMCW) radar is used for fall detection, the selected features for further classification can determine the detection performance. In this paper, a line kernel convolutional neural network (LKCNN) is proposed to process the baseband data directly to detect fall motions. This method utilizes the characteristic of a convolutional neural network (CNN) that it can learn to extract useful features during the training process. A data sample generation method is also proposed to generate multiple samples for the training process by utilizing the multiple receiving channels and sufficiently small pulse repetition time (PRT). The experiment results show that the proposed method can detect fall motions with high accuracy, sensitivity and specificity with fewer network parameters and less computation cost, which is meaningful in realizing an all-time indoor fall detection system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3006918</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3978-4709</orcidid><orcidid>https://orcid.org/0000-0002-6618-4741</orcidid><orcidid>https://orcid.org/0000-0001-8842-5609</orcidid><orcidid>https://orcid.org/0000-0002-3973-9377</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-11, Vol.20 (22), p.13364-13370
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2451898544
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Baseband
Chirp
Continuous radiation
Convolutional neural network
data sample generation
Fall detection
Feature extraction
Kernels
line convolution kernel
Millimeter waves
millimetre-wave radar
Neural networks
Parameter sensitivity
Radar
Radar antennas
Radar detection
Sensors
Training
title A Millimetre-Wave Radar-Based Fall Detection Method Using Line Kernel Convolutional Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Millimetre-Wave%20Radar-Based%20Fall%20Detection%20Method%20Using%20Line%20Kernel%20Convolutional%20Neural%20Network&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Bo&rft.date=2020-11-15&rft.volume=20&rft.issue=22&rft.spage=13364&rft.epage=13370&rft.pages=13364-13370&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3006918&rft_dat=%3Cproquest_RIE%3E2451898544%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451898544&rft_id=info:pmid/&rft_ieee_id=9133594&rfr_iscdi=true