Visible light promoted cross-dehydrogenative coupling: a decade update
The visible light promoted cross-dehydrogenative coupling reaction has emerged as an excellent strategy for the direct formation of C-C/C-heteroatom bonds from simple compounds. The use of renewable energy resources without the need for prefunctionalization of the reactant synergistically promote th...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2020-01, Vol.22 (2), p.6632-6681 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6681 |
---|---|
container_issue | 2 |
container_start_page | 6632 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 22 |
creator | Bagdi, Avik Kumar Rahman, Matiur Bhattacherjee, Dhananjay Zyryanov, Grigory V Ghosh, Sumit Chupakhin, Oleg N Hajra, Alakananda |
description | The visible light promoted cross-dehydrogenative coupling reaction has emerged as an excellent strategy for the direct formation of C-C/C-heteroatom bonds from simple compounds. The use of renewable energy resources without the need for prefunctionalization of the reactant synergistically promote the synthetic pathway towards green synthesis. Although the introduction of the terminology "cross-dehydrogenative coupling (CDC)" was done by Li's group in 2004, visible light promoted CDC has attracted tremendous attention from synthetic chemists since the first report of Ir-photocatalysis by Stephenson
et al.
in 2010. The efficiency of different transition-metal salts (Ir-, Ru-, Rh-, Cu-, Pt-, Co-,
etc.
), organic molecules (eosin Y, eosin B, rose bengal, rhodamine, methylene blue, acridines,
etc.
), I
2
, and heterogeneous catalysts as photocatalysts in this transformation has been extensively investigated during this period. A number of methodologies have been also developed under visible light irradiation even in the absence of any photocatalysts. In this review, all the visible light promoted cross-dehydrogenative coupling methodologies developed over the last decade have been disclosed. Furthermore, the applicability and the mechanistic pathways of the methodologies have been also discussed.
In this review, all the visible light promoted cross-dehydrogenative coupling methodologies that have been developed over the last decade are disclosed. |
doi_str_mv | 10.1039/d0gc02437f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451855994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451855994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-613620def53b57778b12b9eeb4033ed3452a5e87ee460ca1a85213b19f97bf223</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oUVb0J0P7OJN6m2CgUv6nXZj0makjZxNyn0vze2Um-eZuD9mDfvIXRJyR0lPL_3pHSECa6KIzSiIuVJzhQ5PuwpO0VnMS4JoVSlYoSmn1WsbA24rspFh9vQrJoOPHahiTHxsNj60JSwNl21Aeyavq2rdfmADfbgjAfct950cI5OClNHuPidY_QxfX6fvCTzt9nr5HGeOCFpl6SUp4x4KCS3UimVWcpsDmAF4Rw8F5IZCZkCEClxhppMMsotzYtc2YIxPkY3-7vDo189xE4vmz6sB0vNBodMyjwXA3W7p3YpAhS6DdXKhK2mRP_0pJ_IbLLraTrAV3s4RHfg_noc9Ov_dN36gn8D97VvPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451855994</pqid></control><display><type>article</type><title>Visible light promoted cross-dehydrogenative coupling: a decade update</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bagdi, Avik Kumar ; Rahman, Matiur ; Bhattacherjee, Dhananjay ; Zyryanov, Grigory V ; Ghosh, Sumit ; Chupakhin, Oleg N ; Hajra, Alakananda</creator><creatorcontrib>Bagdi, Avik Kumar ; Rahman, Matiur ; Bhattacherjee, Dhananjay ; Zyryanov, Grigory V ; Ghosh, Sumit ; Chupakhin, Oleg N ; Hajra, Alakananda</creatorcontrib><description>The visible light promoted cross-dehydrogenative coupling reaction has emerged as an excellent strategy for the direct formation of C-C/C-heteroatom bonds from simple compounds. The use of renewable energy resources without the need for prefunctionalization of the reactant synergistically promote the synthetic pathway towards green synthesis. Although the introduction of the terminology "cross-dehydrogenative coupling (CDC)" was done by Li's group in 2004, visible light promoted CDC has attracted tremendous attention from synthetic chemists since the first report of Ir-photocatalysis by Stephenson
et al.
in 2010. The efficiency of different transition-metal salts (Ir-, Ru-, Rh-, Cu-, Pt-, Co-,
etc.
), organic molecules (eosin Y, eosin B, rose bengal, rhodamine, methylene blue, acridines,
etc.
), I
2
, and heterogeneous catalysts as photocatalysts in this transformation has been extensively investigated during this period. A number of methodologies have been also developed under visible light irradiation even in the absence of any photocatalysts. In this review, all the visible light promoted cross-dehydrogenative coupling methodologies developed over the last decade have been disclosed. Furthermore, the applicability and the mechanistic pathways of the methodologies have been also discussed.
In this review, all the visible light promoted cross-dehydrogenative coupling methodologies that have been developed over the last decade are disclosed.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d0gc02437f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical bonds ; Chemists ; Copper ; Coupling ; Coupling (molecular) ; Dehydrogenation ; Energy resources ; Energy sources ; Green chemistry ; Iridium ; Irradiation ; Light irradiation ; Methylene blue ; Organic chemistry ; Photocatalysis ; Photocatalysts ; Platinum ; Renewable energy ; Rhodamine ; Salts ; Transition metals</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2020-01, Vol.22 (2), p.6632-6681</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-613620def53b57778b12b9eeb4033ed3452a5e87ee460ca1a85213b19f97bf223</citedby><cites>FETCH-LOGICAL-c451t-613620def53b57778b12b9eeb4033ed3452a5e87ee460ca1a85213b19f97bf223</cites><orcidid>0000-0002-2552-5458 ; 0000-0001-6141-0343 ; 0000-0001-7586-4039 ; 0000-0002-1672-2476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bagdi, Avik Kumar</creatorcontrib><creatorcontrib>Rahman, Matiur</creatorcontrib><creatorcontrib>Bhattacherjee, Dhananjay</creatorcontrib><creatorcontrib>Zyryanov, Grigory V</creatorcontrib><creatorcontrib>Ghosh, Sumit</creatorcontrib><creatorcontrib>Chupakhin, Oleg N</creatorcontrib><creatorcontrib>Hajra, Alakananda</creatorcontrib><title>Visible light promoted cross-dehydrogenative coupling: a decade update</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The visible light promoted cross-dehydrogenative coupling reaction has emerged as an excellent strategy for the direct formation of C-C/C-heteroatom bonds from simple compounds. The use of renewable energy resources without the need for prefunctionalization of the reactant synergistically promote the synthetic pathway towards green synthesis. Although the introduction of the terminology "cross-dehydrogenative coupling (CDC)" was done by Li's group in 2004, visible light promoted CDC has attracted tremendous attention from synthetic chemists since the first report of Ir-photocatalysis by Stephenson
et al.
in 2010. The efficiency of different transition-metal salts (Ir-, Ru-, Rh-, Cu-, Pt-, Co-,
etc.
), organic molecules (eosin Y, eosin B, rose bengal, rhodamine, methylene blue, acridines,
etc.
), I
2
, and heterogeneous catalysts as photocatalysts in this transformation has been extensively investigated during this period. A number of methodologies have been also developed under visible light irradiation even in the absence of any photocatalysts. In this review, all the visible light promoted cross-dehydrogenative coupling methodologies developed over the last decade have been disclosed. Furthermore, the applicability and the mechanistic pathways of the methodologies have been also discussed.
In this review, all the visible light promoted cross-dehydrogenative coupling methodologies that have been developed over the last decade are disclosed.</description><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemists</subject><subject>Copper</subject><subject>Coupling</subject><subject>Coupling (molecular)</subject><subject>Dehydrogenation</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Green chemistry</subject><subject>Iridium</subject><subject>Irradiation</subject><subject>Light irradiation</subject><subject>Methylene blue</subject><subject>Organic chemistry</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Platinum</subject><subject>Renewable energy</subject><subject>Rhodamine</subject><subject>Salts</subject><subject>Transition metals</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFYv3oUVb0J0P7OJN6m2CgUv6nXZj0makjZxNyn0vze2Um-eZuD9mDfvIXRJyR0lPL_3pHSECa6KIzSiIuVJzhQ5PuwpO0VnMS4JoVSlYoSmn1WsbA24rspFh9vQrJoOPHahiTHxsNj60JSwNl21Aeyavq2rdfmADfbgjAfct950cI5OClNHuPidY_QxfX6fvCTzt9nr5HGeOCFpl6SUp4x4KCS3UimVWcpsDmAF4Rw8F5IZCZkCEClxhppMMsotzYtc2YIxPkY3-7vDo189xE4vmz6sB0vNBodMyjwXA3W7p3YpAhS6DdXKhK2mRP_0pJ_IbLLraTrAV3s4RHfg_noc9Ov_dN36gn8D97VvPw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Bagdi, Avik Kumar</creator><creator>Rahman, Matiur</creator><creator>Bhattacherjee, Dhananjay</creator><creator>Zyryanov, Grigory V</creator><creator>Ghosh, Sumit</creator><creator>Chupakhin, Oleg N</creator><creator>Hajra, Alakananda</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2552-5458</orcidid><orcidid>https://orcid.org/0000-0001-6141-0343</orcidid><orcidid>https://orcid.org/0000-0001-7586-4039</orcidid><orcidid>https://orcid.org/0000-0002-1672-2476</orcidid></search><sort><creationdate>20200101</creationdate><title>Visible light promoted cross-dehydrogenative coupling: a decade update</title><author>Bagdi, Avik Kumar ; Rahman, Matiur ; Bhattacherjee, Dhananjay ; Zyryanov, Grigory V ; Ghosh, Sumit ; Chupakhin, Oleg N ; Hajra, Alakananda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-613620def53b57778b12b9eeb4033ed3452a5e87ee460ca1a85213b19f97bf223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemists</topic><topic>Copper</topic><topic>Coupling</topic><topic>Coupling (molecular)</topic><topic>Dehydrogenation</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Green chemistry</topic><topic>Iridium</topic><topic>Irradiation</topic><topic>Light irradiation</topic><topic>Methylene blue</topic><topic>Organic chemistry</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Platinum</topic><topic>Renewable energy</topic><topic>Rhodamine</topic><topic>Salts</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagdi, Avik Kumar</creatorcontrib><creatorcontrib>Rahman, Matiur</creatorcontrib><creatorcontrib>Bhattacherjee, Dhananjay</creatorcontrib><creatorcontrib>Zyryanov, Grigory V</creatorcontrib><creatorcontrib>Ghosh, Sumit</creatorcontrib><creatorcontrib>Chupakhin, Oleg N</creatorcontrib><creatorcontrib>Hajra, Alakananda</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagdi, Avik Kumar</au><au>Rahman, Matiur</au><au>Bhattacherjee, Dhananjay</au><au>Zyryanov, Grigory V</au><au>Ghosh, Sumit</au><au>Chupakhin, Oleg N</au><au>Hajra, Alakananda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible light promoted cross-dehydrogenative coupling: a decade update</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>22</volume><issue>2</issue><spage>6632</spage><epage>6681</epage><pages>6632-6681</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The visible light promoted cross-dehydrogenative coupling reaction has emerged as an excellent strategy for the direct formation of C-C/C-heteroatom bonds from simple compounds. The use of renewable energy resources without the need for prefunctionalization of the reactant synergistically promote the synthetic pathway towards green synthesis. Although the introduction of the terminology "cross-dehydrogenative coupling (CDC)" was done by Li's group in 2004, visible light promoted CDC has attracted tremendous attention from synthetic chemists since the first report of Ir-photocatalysis by Stephenson
et al.
in 2010. The efficiency of different transition-metal salts (Ir-, Ru-, Rh-, Cu-, Pt-, Co-,
etc.
), organic molecules (eosin Y, eosin B, rose bengal, rhodamine, methylene blue, acridines,
etc.
), I
2
, and heterogeneous catalysts as photocatalysts in this transformation has been extensively investigated during this period. A number of methodologies have been also developed under visible light irradiation even in the absence of any photocatalysts. In this review, all the visible light promoted cross-dehydrogenative coupling methodologies developed over the last decade have been disclosed. Furthermore, the applicability and the mechanistic pathways of the methodologies have been also discussed.
In this review, all the visible light promoted cross-dehydrogenative coupling methodologies that have been developed over the last decade are disclosed.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0gc02437f</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2552-5458</orcidid><orcidid>https://orcid.org/0000-0001-6141-0343</orcidid><orcidid>https://orcid.org/0000-0001-7586-4039</orcidid><orcidid>https://orcid.org/0000-0002-1672-2476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2020-01, Vol.22 (2), p.6632-6681 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_proquest_journals_2451855994 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Catalysts Chemical bonds Chemists Copper Coupling Coupling (molecular) Dehydrogenation Energy resources Energy sources Green chemistry Iridium Irradiation Light irradiation Methylene blue Organic chemistry Photocatalysis Photocatalysts Platinum Renewable energy Rhodamine Salts Transition metals |
title | Visible light promoted cross-dehydrogenative coupling: a decade update |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20light%20promoted%20cross-dehydrogenative%20coupling:%20a%20decade%20update&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Bagdi,%20Avik%20Kumar&rft.date=2020-01-01&rft.volume=22&rft.issue=2&rft.spage=6632&rft.epage=6681&rft.pages=6632-6681&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d0gc02437f&rft_dat=%3Cproquest_cross%3E2451855994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451855994&rft_id=info:pmid/&rfr_iscdi=true |