Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: A tutorial review

The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of quantum chemistry 2020-11, Vol.120 (21), p.n/a
1. Verfasser: Dohn, Asmus O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title International journal of quantum chemistry
container_volume 120
creator Dohn, Asmus O.
description The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solution. Beginners are advised on how to increase the reliability and accuracy of the simulations through benchmarking. Central considerations on methodologies for QM/MM Molecular Dynamics (MD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment (ASE). A worked example of QM/MM Born–Oppenheimer MD is included, and a flowchart summarizing the most salient decisions and tasks within the methodology is presented. Main concepts and central technical details of electrostatic embedding quantum mechanics / molecular mechanics (QM/MM) simulations are explained and illustrated to assist newcomers in performing and gauging the accuracy of such simulations. Central considerations on methodologies for QM/MM Born‐Oppenheimer Molecular Dynamics (BOMD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment. A working example of running a QM/MM BOMD simulation is included.
doi_str_mv 10.1002/qua.26343
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451562959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451562959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-2418383ff79dc2be8428c669940d5a7d7d492f9686be8ba7454a7757a661afa73</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKsL_0HAlYtpM0kmmXFXil-giGDB3ZAmGUnJTNp8WLrxt5u2bl09ePfc9-AAcF2iSYkQnm6SmGBGKDkBoxI1vKCs_DwFo5yhgjNUn4OLEFYIIUYYH4Gf12SjCVJYDbXVMnoXoohGQt0vtVJm-ILB9MnmnRsC7JyHvVPaHoLok4zJaygGBdVuEL2RAbouI_lWsjpAM8DgbNq37-AMxhSdN8JCr7-N3l6Cs07YoK_-5hgsHu4_5k_Fy9vj83z2UkhCMCkwLWtSk67jjZJ4qWuKa8lY01CkKsEVV7TBXcNqlrOl4LSigvOKC8ZK0QlOxuDmeHft3SbpENuVS37IL1tMq7JiuKmaTN0eKZktBK-7du1NL_yuLVG719tmve1Bb2anR3ZrrN79D7bvi9mx8Queu36f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451562959</pqid></control><display><type>article</type><title>Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: A tutorial review</title><source>Wiley Online Library All Journals</source><creator>Dohn, Asmus O.</creator><creatorcontrib>Dohn, Asmus O.</creatorcontrib><description>The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solution. Beginners are advised on how to increase the reliability and accuracy of the simulations through benchmarking. Central considerations on methodologies for QM/MM Molecular Dynamics (MD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment (ASE). A worked example of QM/MM Born–Oppenheimer MD is included, and a flowchart summarizing the most salient decisions and tasks within the methodology is presented. Main concepts and central technical details of electrostatic embedding quantum mechanics / molecular mechanics (QM/MM) simulations are explained and illustrated to assist newcomers in performing and gauging the accuracy of such simulations. Central considerations on methodologies for QM/MM Born‐Oppenheimer Molecular Dynamics (BOMD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment. A working example of running a QM/MM BOMD simulation is included.</description><identifier>ISSN: 0020-7608</identifier><identifier>EISSN: 1097-461X</identifier><identifier>DOI: 10.1002/qua.26343</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>benchmarking ; Chemistry ; electrostatic embedding ; Embedding ; Flow charts ; Gaging ; implementation ; Molecular dynamics ; Molecular structure ; Physical chemistry ; QM/MM ; QM/MM BOMD ; Quantum mechanics ; Simulation ; solvation ; structure</subject><ispartof>International journal of quantum chemistry, 2020-11, Vol.120 (21), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-2418383ff79dc2be8428c669940d5a7d7d492f9686be8ba7454a7757a661afa73</citedby><cites>FETCH-LOGICAL-c3323-2418383ff79dc2be8428c669940d5a7d7d492f9686be8ba7454a7757a661afa73</cites><orcidid>0000-0002-5172-7168</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqua.26343$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqua.26343$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Dohn, Asmus O.</creatorcontrib><title>Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: A tutorial review</title><title>International journal of quantum chemistry</title><description>The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solution. Beginners are advised on how to increase the reliability and accuracy of the simulations through benchmarking. Central considerations on methodologies for QM/MM Molecular Dynamics (MD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment (ASE). A worked example of QM/MM Born–Oppenheimer MD is included, and a flowchart summarizing the most salient decisions and tasks within the methodology is presented. Main concepts and central technical details of electrostatic embedding quantum mechanics / molecular mechanics (QM/MM) simulations are explained and illustrated to assist newcomers in performing and gauging the accuracy of such simulations. Central considerations on methodologies for QM/MM Born‐Oppenheimer Molecular Dynamics (BOMD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment. A working example of running a QM/MM BOMD simulation is included.</description><subject>benchmarking</subject><subject>Chemistry</subject><subject>electrostatic embedding</subject><subject>Embedding</subject><subject>Flow charts</subject><subject>Gaging</subject><subject>implementation</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>Physical chemistry</subject><subject>QM/MM</subject><subject>QM/MM BOMD</subject><subject>Quantum mechanics</subject><subject>Simulation</subject><subject>solvation</subject><subject>structure</subject><issn>0020-7608</issn><issn>1097-461X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKsL_0HAlYtpM0kmmXFXil-giGDB3ZAmGUnJTNp8WLrxt5u2bl09ePfc9-AAcF2iSYkQnm6SmGBGKDkBoxI1vKCs_DwFo5yhgjNUn4OLEFYIIUYYH4Gf12SjCVJYDbXVMnoXoohGQt0vtVJm-ILB9MnmnRsC7JyHvVPaHoLok4zJaygGBdVuEL2RAbouI_lWsjpAM8DgbNq37-AMxhSdN8JCr7-N3l6Cs07YoK_-5hgsHu4_5k_Fy9vj83z2UkhCMCkwLWtSk67jjZJ4qWuKa8lY01CkKsEVV7TBXcNqlrOl4LSigvOKC8ZK0QlOxuDmeHft3SbpENuVS37IL1tMq7JiuKmaTN0eKZktBK-7du1NL_yuLVG719tmve1Bb2anR3ZrrN79D7bvi9mx8Queu36f</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Dohn, Asmus O.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5172-7168</orcidid></search><sort><creationdate>20201101</creationdate><title>Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: A tutorial review</title><author>Dohn, Asmus O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-2418383ff79dc2be8428c669940d5a7d7d492f9686be8ba7454a7757a661afa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>benchmarking</topic><topic>Chemistry</topic><topic>electrostatic embedding</topic><topic>Embedding</topic><topic>Flow charts</topic><topic>Gaging</topic><topic>implementation</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>Physical chemistry</topic><topic>QM/MM</topic><topic>QM/MM BOMD</topic><topic>Quantum mechanics</topic><topic>Simulation</topic><topic>solvation</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dohn, Asmus O.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of quantum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dohn, Asmus O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: A tutorial review</atitle><jtitle>International journal of quantum chemistry</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>120</volume><issue>21</issue><epage>n/a</epage><issn>0020-7608</issn><eissn>1097-461X</eissn><abstract>The main concepts and important technical details of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) simulations are explained and illustrated with the intent of assisting newcomers in performing and gauging the accuracy of such simulations, focused on smaller molecules in solution. Beginners are advised on how to increase the reliability and accuracy of the simulations through benchmarking. Central considerations on methodologies for QM/MM Molecular Dynamics (MD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment (ASE). A worked example of QM/MM Born–Oppenheimer MD is included, and a flowchart summarizing the most salient decisions and tasks within the methodology is presented. Main concepts and central technical details of electrostatic embedding quantum mechanics / molecular mechanics (QM/MM) simulations are explained and illustrated to assist newcomers in performing and gauging the accuracy of such simulations. Central considerations on methodologies for QM/MM Born‐Oppenheimer Molecular Dynamics (BOMD) simulations are presented, alongside technical fundamentals regarding the construction and manipulation of simulation systems using the python‐based Atomic Simulation Environment. A working example of running a QM/MM BOMD simulation is included.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/qua.26343</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5172-7168</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7608
ispartof International journal of quantum chemistry, 2020-11, Vol.120 (21), p.n/a
issn 0020-7608
1097-461X
language eng
recordid cdi_proquest_journals_2451562959
source Wiley Online Library All Journals
subjects benchmarking
Chemistry
electrostatic embedding
Embedding
Flow charts
Gaging
implementation
Molecular dynamics
Molecular structure
Physical chemistry
QM/MM
QM/MM BOMD
Quantum mechanics
Simulation
solvation
structure
title Multiscale electrostatic embedding simulations for modeling structure and dynamics of molecules in solution: A tutorial review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A26%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20electrostatic%20embedding%20simulations%20for%20modeling%20structure%20and%20dynamics%20of%20molecules%20in%20solution:%20A%20tutorial%20review&rft.jtitle=International%20journal%20of%20quantum%20chemistry&rft.au=Dohn,%20Asmus%20O.&rft.date=2020-11-01&rft.volume=120&rft.issue=21&rft.epage=n/a&rft.issn=0020-7608&rft.eissn=1097-461X&rft_id=info:doi/10.1002/qua.26343&rft_dat=%3Cproquest_cross%3E2451562959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451562959&rft_id=info:pmid/&rfr_iscdi=true