Signatures of a long-range spin-triplet component in an Andreev interferometer

We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-09, Vol.102 (9), p.1, Article 094517
1. Verfasser: Volkov, Anatoly F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1
container_title Physical review. B
container_volume 102
creator Volkov, Anatoly F.
description We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.
doi_str_mv 10.1103/PhysRevB.102.094517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451560860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451560860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBr1tPkjZtLufwC4aKH9clSU9mx5bUpBvs31uZenWe8_JyDjyEXDLIGQNx_fJ5SK-4v8kZ8BxUUbLqhEx4IVWmlFSn_1zCOZmltAYAJkFVoCbk6a1beT3sIiYaHNV0E_wqi9qvkKa-89kQu36DA7Vh2wePfqCdp9rTuW8j4n7cBowOY9jiCBfkzOlNwtnvnJKPu9v3xUO2fL5_XMyXmeVVNWSm5ArQMDYCYFEJq7k0rGxdC0a0ZVHU3DrjCit1La3hBhGELpxy0tiaiSm5Ot7tY_jaYRqaddhFP75s-CiglFBLGFvi2LIxpBTRNX3stjoeGgbNj7vmz90Y8OboTnwDuIVkzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451560860</pqid></control><display><type>article</type><title>Signatures of a long-range spin-triplet component in an Andreev interferometer</title><source>American Physical Society Journals</source><creator>Volkov, Anatoly F.</creator><creatorcontrib>Volkov, Anatoly F.</creatorcontrib><description>We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.094517</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Angles (geometry) ; Circuits ; Ferromagnetism ; Heterostructures ; Identification methods ; Josephson junctions ; Mathematical analysis ; Proximity effect (electricity) ; Resistance ; Superconductor junctions ; Superconductors ; Wire</subject><ispartof>Physical review. B, 2020-09, Vol.102 (9), p.1, Article 094517</ispartof><rights>Copyright American Physical Society Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</citedby><cites>FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</cites><orcidid>0000-0003-0028-4640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Volkov, Anatoly F.</creatorcontrib><title>Signatures of a long-range spin-triplet component in an Andreev interferometer</title><title>Physical review. B</title><description>We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.</description><subject>Angles (geometry)</subject><subject>Circuits</subject><subject>Ferromagnetism</subject><subject>Heterostructures</subject><subject>Identification methods</subject><subject>Josephson junctions</subject><subject>Mathematical analysis</subject><subject>Proximity effect (electricity)</subject><subject>Resistance</subject><subject>Superconductor junctions</subject><subject>Superconductors</subject><subject>Wire</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBr1tPkjZtLufwC4aKH9clSU9mx5bUpBvs31uZenWe8_JyDjyEXDLIGQNx_fJ5SK-4v8kZ8BxUUbLqhEx4IVWmlFSn_1zCOZmltAYAJkFVoCbk6a1beT3sIiYaHNV0E_wqi9qvkKa-89kQu36DA7Vh2wePfqCdp9rTuW8j4n7cBowOY9jiCBfkzOlNwtnvnJKPu9v3xUO2fL5_XMyXmeVVNWSm5ArQMDYCYFEJq7k0rGxdC0a0ZVHU3DrjCit1La3hBhGELpxy0tiaiSm5Ot7tY_jaYRqaddhFP75s-CiglFBLGFvi2LIxpBTRNX3stjoeGgbNj7vmz90Y8OboTnwDuIVkzA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Volkov, Anatoly F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0028-4640</orcidid></search><sort><creationdate>20200901</creationdate><title>Signatures of a long-range spin-triplet component in an Andreev interferometer</title><author>Volkov, Anatoly F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angles (geometry)</topic><topic>Circuits</topic><topic>Ferromagnetism</topic><topic>Heterostructures</topic><topic>Identification methods</topic><topic>Josephson junctions</topic><topic>Mathematical analysis</topic><topic>Proximity effect (electricity)</topic><topic>Resistance</topic><topic>Superconductor junctions</topic><topic>Superconductors</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Anatoly F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Anatoly F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of a long-range spin-triplet component in an Andreev interferometer</atitle><jtitle>Physical review. B</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>102</volume><issue>9</issue><spage>1</spage><pages>1-</pages><artnum>094517</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.094517</doi><orcidid>https://orcid.org/0000-0003-0028-4640</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-09, Vol.102 (9), p.1, Article 094517
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2451560860
source American Physical Society Journals
subjects Angles (geometry)
Circuits
Ferromagnetism
Heterostructures
Identification methods
Josephson junctions
Mathematical analysis
Proximity effect (electricity)
Resistance
Superconductor junctions
Superconductors
Wire
title Signatures of a long-range spin-triplet component in an Andreev interferometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20a%20long-range%20spin-triplet%20component%20in%20an%20Andreev%20interferometer&rft.jtitle=Physical%20review.%20B&rft.au=Volkov,%20Anatoly%20F.&rft.date=2020-09-01&rft.volume=102&rft.issue=9&rft.spage=1&rft.pages=1-&rft.artnum=094517&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.094517&rft_dat=%3Cproquest_cross%3E2451560860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451560860&rft_id=info:pmid/&rfr_iscdi=true