Signatures of a long-range spin-triplet component in an Andreev interferometer
We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S,...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-09, Vol.102 (9), p.1, Article 094517 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Physical review. B |
container_volume | 102 |
creator | Volkov, Anatoly F. |
description | We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures. |
doi_str_mv | 10.1103/PhysRevB.102.094517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451560860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451560860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOZ-gTcBr1tPkjZtLufwC4aKH9clSU9mx5bUpBvs31uZenWe8_JyDjyEXDLIGQNx_fJ5SK-4v8kZ8BxUUbLqhEx4IVWmlFSn_1zCOZmltAYAJkFVoCbk6a1beT3sIiYaHNV0E_wqi9qvkKa-89kQu36DA7Vh2wePfqCdp9rTuW8j4n7cBowOY9jiCBfkzOlNwtnvnJKPu9v3xUO2fL5_XMyXmeVVNWSm5ArQMDYCYFEJq7k0rGxdC0a0ZVHU3DrjCit1La3hBhGELpxy0tiaiSm5Ot7tY_jaYRqaddhFP75s-CiglFBLGFvi2LIxpBTRNX3stjoeGgbNj7vmz90Y8OboTnwDuIVkzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451560860</pqid></control><display><type>article</type><title>Signatures of a long-range spin-triplet component in an Andreev interferometer</title><source>American Physical Society Journals</source><creator>Volkov, Anatoly F.</creator><creatorcontrib>Volkov, Anatoly F.</creatorcontrib><description>We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.094517</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Angles (geometry) ; Circuits ; Ferromagnetism ; Heterostructures ; Identification methods ; Josephson junctions ; Mathematical analysis ; Proximity effect (electricity) ; Resistance ; Superconductor junctions ; Superconductors ; Wire</subject><ispartof>Physical review. B, 2020-09, Vol.102 (9), p.1, Article 094517</ispartof><rights>Copyright American Physical Society Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</citedby><cites>FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</cites><orcidid>0000-0003-0028-4640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Volkov, Anatoly F.</creatorcontrib><title>Signatures of a long-range spin-triplet component in an Andreev interferometer</title><title>Physical review. B</title><description>We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.</description><subject>Angles (geometry)</subject><subject>Circuits</subject><subject>Ferromagnetism</subject><subject>Heterostructures</subject><subject>Identification methods</subject><subject>Josephson junctions</subject><subject>Mathematical analysis</subject><subject>Proximity effect (electricity)</subject><subject>Resistance</subject><subject>Superconductor junctions</subject><subject>Superconductors</subject><subject>Wire</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOZ-gTcBr1tPkjZtLufwC4aKH9clSU9mx5bUpBvs31uZenWe8_JyDjyEXDLIGQNx_fJ5SK-4v8kZ8BxUUbLqhEx4IVWmlFSn_1zCOZmltAYAJkFVoCbk6a1beT3sIiYaHNV0E_wqi9qvkKa-89kQu36DA7Vh2wePfqCdp9rTuW8j4n7cBowOY9jiCBfkzOlNwtnvnJKPu9v3xUO2fL5_XMyXmeVVNWSm5ArQMDYCYFEJq7k0rGxdC0a0ZVHU3DrjCit1La3hBhGELpxy0tiaiSm5Ot7tY_jaYRqaddhFP75s-CiglFBLGFvi2LIxpBTRNX3stjoeGgbNj7vmz90Y8OboTnwDuIVkzA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Volkov, Anatoly F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0028-4640</orcidid></search><sort><creationdate>20200901</creationdate><title>Signatures of a long-range spin-triplet component in an Andreev interferometer</title><author>Volkov, Anatoly F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-b5290eb11b520e473ca26b15dfd0b3d54482cfbf4c6a86cb2bee03a4f9f6bc813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angles (geometry)</topic><topic>Circuits</topic><topic>Ferromagnetism</topic><topic>Heterostructures</topic><topic>Identification methods</topic><topic>Josephson junctions</topic><topic>Mathematical analysis</topic><topic>Proximity effect (electricity)</topic><topic>Resistance</topic><topic>Superconductor junctions</topic><topic>Superconductors</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, Anatoly F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, Anatoly F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of a long-range spin-triplet component in an Andreev interferometer</atitle><jtitle>Physical review. B</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>102</volume><issue>9</issue><spage>1</spage><pages>1-</pages><artnum>094517</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We analyze the Josephson I J and dissipative Idis currents in a magnetic Andreev interferometer in the presence of the long-range spin triplet component (LRSTC). The Andreev interferometer has a crosslike geometry and consists of a SFl−F−FrS circuit and perpendicular to it a N-F-N circuit, where S, Fl, r are superconductors and weak ferromagnets with noncollinear magnetizations Ml, r, and F is a ferromagnet with a high exchange energy. The ferromagnetic wire F can be replaced with a nonmagnetic wire n. In the limit of a weak proximity effect (PE), we obtain simple analytical expressions for the currents IJ = Ic(α, β) sin φ and Idis = IV (α, β) cos φ. In particular, the critical Josephson current in a long Josephson junction (JJ) is Ic(α, β) = Ic0χ (α, β), where the function χ (α, β) is a function of angles (α, β) l, r that characterize the orientations of Ml, r. The oscillating part of the dissipative current I osc (V) = χ (α, β) cos φ IV 0 (V) in the N-F/n-N circuit depends on the angles (α, β) l, r in the same way as the critical Josephson current Ic(α, β) but can be much greater than the Ic(α, β). At some angles the current Ic(α, β) changes sign. We briefly discuss a relation between the negative current Ic(α, β) and paramagnetic response. We argue that the measurements of the conductance in the N-F/n-N circuit can be used as another complementary method to identify the LRSTC in S/F heterostructures.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.094517</doi><orcidid>https://orcid.org/0000-0003-0028-4640</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2020-09, Vol.102 (9), p.1, Article 094517 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2451560860 |
source | American Physical Society Journals |
subjects | Angles (geometry) Circuits Ferromagnetism Heterostructures Identification methods Josephson junctions Mathematical analysis Proximity effect (electricity) Resistance Superconductor junctions Superconductors Wire |
title | Signatures of a long-range spin-triplet component in an Andreev interferometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20a%20long-range%20spin-triplet%20component%20in%20an%20Andreev%20interferometer&rft.jtitle=Physical%20review.%20B&rft.au=Volkov,%20Anatoly%20F.&rft.date=2020-09-01&rft.volume=102&rft.issue=9&rft.spage=1&rft.pages=1-&rft.artnum=094517&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.094517&rft_dat=%3Cproquest_cross%3E2451560860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451560860&rft_id=info:pmid/&rfr_iscdi=true |