Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence
The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and...
Gespeichert in:
Veröffentlicht in: | Doklady. Physical chemistry (1991) 2020-05, Vol.492 (1), p.51-56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Doklady. Physical chemistry (1991) |
container_volume | 492 |
creator | Burykina, J. V. Boiko, D. A. Ilyushenkova, V. V. Eremin, D. B. Ananikov, V. P. |
description | The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules. |
doi_str_mv | 10.1134/S0012501620050024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451546098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451546098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTNs3ayzG_BhMvptclS0_WjDapSTbwZ_iPbZnghXh14JzneQ-8hFwzuGUs43drAJbmwEQKkAOk_IRMmIAiyVjKTslkPCfj_ZxchLADgHKWlRPytXBd77FBG8wB6YsMga57VNG7DqM3alj1vbFb6jRdNNgZJVs6Sm5v60C18zQ2SO_xgK3rO7RxJOft1nkTm-5IvEjVGIt0hdLbMUzams59NNooM-QtbcS2NVu0Ci_JmZZtwKufOSXvjw9vi-dk9fq0XMxXicqYiIlUBWyKQnKZC6hnG5aJMpsprrWUUnFkuiwFiA0XucxACVGIQtclpJjzAvIym5KbY27v3cceQ6x2bu_t8LJKec5yLqAsBoodKeVdCB511XvTSf9ZMajG5qs_zQ9OenTCwNot-t_k_6VvhAaGmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451546098</pqid></control><display><type>article</type><title>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</title><source>Springer Nature - Complete Springer Journals</source><creator>Burykina, J. V. ; Boiko, D. A. ; Ilyushenkova, V. V. ; Eremin, D. B. ; Ananikov, V. P.</creator><creatorcontrib>Burykina, J. V. ; Boiko, D. A. ; Ilyushenkova, V. V. ; Eremin, D. B. ; Ananikov, V. P.</creatorcontrib><description>The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.</description><identifier>ISSN: 0012-5016</identifier><identifier>EISSN: 1608-3121</identifier><identifier>DOI: 10.1134/S0012501620050024</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Chemical compounds ; Chemistry ; Chemistry and Materials Science ; Ions ; Machine learning ; Mass spectrometers ; Mass spectrometry ; Physical Chemistry ; Reaction mechanisms</subject><ispartof>Doklady. Physical chemistry (1991), 2020-05, Vol.492 (1), p.51-56</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</citedby><cites>FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012501620050024$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012501620050024$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Burykina, J. V.</creatorcontrib><creatorcontrib>Boiko, D. A.</creatorcontrib><creatorcontrib>Ilyushenkova, V. V.</creatorcontrib><creatorcontrib>Eremin, D. B.</creatorcontrib><creatorcontrib>Ananikov, V. P.</creatorcontrib><title>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</title><title>Doklady. Physical chemistry (1991)</title><addtitle>Dokl Phys Chem</addtitle><description>The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ions</subject><subject>Machine learning</subject><subject>Mass spectrometers</subject><subject>Mass spectrometry</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><issn>0012-5016</issn><issn>1608-3121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTNs3ayzG_BhMvptclS0_WjDapSTbwZ_iPbZnghXh14JzneQ-8hFwzuGUs43drAJbmwEQKkAOk_IRMmIAiyVjKTslkPCfj_ZxchLADgHKWlRPytXBd77FBG8wB6YsMga57VNG7DqM3alj1vbFb6jRdNNgZJVs6Sm5v60C18zQ2SO_xgK3rO7RxJOft1nkTm-5IvEjVGIt0hdLbMUzams59NNooM-QtbcS2NVu0Ci_JmZZtwKufOSXvjw9vi-dk9fq0XMxXicqYiIlUBWyKQnKZC6hnG5aJMpsprrWUUnFkuiwFiA0XucxACVGIQtclpJjzAvIym5KbY27v3cceQ6x2bu_t8LJKec5yLqAsBoodKeVdCB511XvTSf9ZMajG5qs_zQ9OenTCwNot-t_k_6VvhAaGmw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Burykina, J. V.</creator><creator>Boiko, D. A.</creator><creator>Ilyushenkova, V. V.</creator><creator>Eremin, D. B.</creator><creator>Ananikov, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</title><author>Burykina, J. V. ; Boiko, D. A. ; Ilyushenkova, V. V. ; Eremin, D. B. ; Ananikov, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ions</topic><topic>Machine learning</topic><topic>Mass spectrometers</topic><topic>Mass spectrometry</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burykina, J. V.</creatorcontrib><creatorcontrib>Boiko, D. A.</creatorcontrib><creatorcontrib>Ilyushenkova, V. V.</creatorcontrib><creatorcontrib>Eremin, D. B.</creatorcontrib><creatorcontrib>Ananikov, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Physical chemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burykina, J. V.</au><au>Boiko, D. A.</au><au>Ilyushenkova, V. V.</au><au>Eremin, D. B.</au><au>Ananikov, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</atitle><jtitle>Doklady. Physical chemistry (1991)</jtitle><stitle>Dokl Phys Chem</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>492</volume><issue>1</issue><spage>51</spage><epage>56</epage><pages>51-56</pages><issn>0012-5016</issn><eissn>1608-3121</eissn><abstract>The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012501620050024</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-5016 |
ispartof | Doklady. Physical chemistry (1991), 2020-05, Vol.492 (1), p.51-56 |
issn | 0012-5016 1608-3121 |
language | eng |
recordid | cdi_proquest_journals_2451546098 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial intelligence Chemical compounds Chemistry Chemistry and Materials Science Ions Machine learning Mass spectrometers Mass spectrometry Physical Chemistry Reaction mechanisms |
title | Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Mass%20Spectrometric%20Mapping%20of%20Chemical%20Compounds%20for%20the%20Development%20of%20Algorithms%20for%20Machine%20Learning%20and%20Artificial%20Intelligence&rft.jtitle=Doklady.%20Physical%20chemistry%20(1991)&rft.au=Burykina,%20J.%20V.&rft.date=2020-05-01&rft.volume=492&rft.issue=1&rft.spage=51&rft.epage=56&rft.pages=51-56&rft.issn=0012-5016&rft.eissn=1608-3121&rft_id=info:doi/10.1134/S0012501620050024&rft_dat=%3Cproquest_cross%3E2451546098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451546098&rft_id=info:pmid/&rfr_iscdi=true |