Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence

The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Physical chemistry (1991) 2020-05, Vol.492 (1), p.51-56
Hauptverfasser: Burykina, J. V., Boiko, D. A., Ilyushenkova, V. V., Eremin, D. B., Ananikov, V. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 51
container_title Doklady. Physical chemistry (1991)
container_volume 492
creator Burykina, J. V.
Boiko, D. A.
Ilyushenkova, V. V.
Eremin, D. B.
Ananikov, V. P.
description The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.
doi_str_mv 10.1134/S0012501620050024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451546098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451546098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTNs3ayzG_BhMvptclS0_WjDapSTbwZ_iPbZnghXh14JzneQ-8hFwzuGUs43drAJbmwEQKkAOk_IRMmIAiyVjKTslkPCfj_ZxchLADgHKWlRPytXBd77FBG8wB6YsMga57VNG7DqM3alj1vbFb6jRdNNgZJVs6Sm5v60C18zQ2SO_xgK3rO7RxJOft1nkTm-5IvEjVGIt0hdLbMUzams59NNooM-QtbcS2NVu0Ci_JmZZtwKufOSXvjw9vi-dk9fq0XMxXicqYiIlUBWyKQnKZC6hnG5aJMpsprrWUUnFkuiwFiA0XucxACVGIQtclpJjzAvIym5KbY27v3cceQ6x2bu_t8LJKec5yLqAsBoodKeVdCB511XvTSf9ZMajG5qs_zQ9OenTCwNot-t_k_6VvhAaGmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451546098</pqid></control><display><type>article</type><title>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</title><source>Springer Nature - Complete Springer Journals</source><creator>Burykina, J. V. ; Boiko, D. A. ; Ilyushenkova, V. V. ; Eremin, D. B. ; Ananikov, V. P.</creator><creatorcontrib>Burykina, J. V. ; Boiko, D. A. ; Ilyushenkova, V. V. ; Eremin, D. B. ; Ananikov, V. P.</creatorcontrib><description>The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.</description><identifier>ISSN: 0012-5016</identifier><identifier>EISSN: 1608-3121</identifier><identifier>DOI: 10.1134/S0012501620050024</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Artificial intelligence ; Chemical compounds ; Chemistry ; Chemistry and Materials Science ; Ions ; Machine learning ; Mass spectrometers ; Mass spectrometry ; Physical Chemistry ; Reaction mechanisms</subject><ispartof>Doklady. Physical chemistry (1991), 2020-05, Vol.492 (1), p.51-56</ispartof><rights>Pleiades Publishing, Ltd. 2020</rights><rights>Pleiades Publishing, Ltd. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</citedby><cites>FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012501620050024$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012501620050024$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Burykina, J. V.</creatorcontrib><creatorcontrib>Boiko, D. A.</creatorcontrib><creatorcontrib>Ilyushenkova, V. V.</creatorcontrib><creatorcontrib>Eremin, D. B.</creatorcontrib><creatorcontrib>Ananikov, V. P.</creatorcontrib><title>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</title><title>Doklady. Physical chemistry (1991)</title><addtitle>Dokl Phys Chem</addtitle><description>The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ions</subject><subject>Machine learning</subject><subject>Mass spectrometers</subject><subject>Mass spectrometry</subject><subject>Physical Chemistry</subject><subject>Reaction mechanisms</subject><issn>0012-5016</issn><issn>1608-3121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19WTNs3ayzG_BhMvptclS0_WjDapSTbwZ_iPbZnghXh14JzneQ-8hFwzuGUs43drAJbmwEQKkAOk_IRMmIAiyVjKTslkPCfj_ZxchLADgHKWlRPytXBd77FBG8wB6YsMga57VNG7DqM3alj1vbFb6jRdNNgZJVs6Sm5v60C18zQ2SO_xgK3rO7RxJOft1nkTm-5IvEjVGIt0hdLbMUzams59NNooM-QtbcS2NVu0Ci_JmZZtwKufOSXvjw9vi-dk9fq0XMxXicqYiIlUBWyKQnKZC6hnG5aJMpsprrWUUnFkuiwFiA0XucxACVGIQtclpJjzAvIym5KbY27v3cceQ6x2bu_t8LJKec5yLqAsBoodKeVdCB511XvTSf9ZMajG5qs_zQ9OenTCwNot-t_k_6VvhAaGmw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Burykina, J. V.</creator><creator>Boiko, D. A.</creator><creator>Ilyushenkova, V. V.</creator><creator>Eremin, D. B.</creator><creator>Ananikov, V. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</title><author>Burykina, J. V. ; Boiko, D. A. ; Ilyushenkova, V. V. ; Eremin, D. B. ; Ananikov, V. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ac80b88a4a560d7b136937c4ffaaac4e1f99606b465a30c66868fd902e5480593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ions</topic><topic>Machine learning</topic><topic>Mass spectrometers</topic><topic>Mass spectrometry</topic><topic>Physical Chemistry</topic><topic>Reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burykina, J. V.</creatorcontrib><creatorcontrib>Boiko, D. A.</creatorcontrib><creatorcontrib>Ilyushenkova, V. V.</creatorcontrib><creatorcontrib>Eremin, D. B.</creatorcontrib><creatorcontrib>Ananikov, V. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. Physical chemistry (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burykina, J. V.</au><au>Boiko, D. A.</au><au>Ilyushenkova, V. V.</au><au>Eremin, D. B.</au><au>Ananikov, V. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence</atitle><jtitle>Doklady. Physical chemistry (1991)</jtitle><stitle>Dokl Phys Chem</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>492</volume><issue>1</issue><spage>51</spage><epage>56</epage><pages>51-56</pages><issn>0012-5016</issn><eissn>1608-3121</eissn><abstract>The influence of the accuracy of mass measurements on the number of possible structural compositions and the computation time of computer-aided interpretation of mass spectrometric data has been evaluated. Experimental measurements have been performed for two model objects in the range of small and medium masses using high, ultrahigh, and extreme high resolution electrospray ionization mass spectrometers. The number of possible solutions have been examined and prospects of using machine learning in combination with mass spectrometry for predicting new data on reaction mechanisms and searching for hidden relationships in the chemical space have been demonstrated. It has been shown that there are two types of relationships between the molecular formula and the mass determination error depending on the ion mass: a nonlinear curve is observed for small molecules and a linear relationship is observed for large molecules.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012501620050024</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-5016
ispartof Doklady. Physical chemistry (1991), 2020-05, Vol.492 (1), p.51-56
issn 0012-5016
1608-3121
language eng
recordid cdi_proquest_journals_2451546098
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial intelligence
Chemical compounds
Chemistry
Chemistry and Materials Science
Ions
Machine learning
Mass spectrometers
Mass spectrometry
Physical Chemistry
Reaction mechanisms
title Comprehensive Mass Spectrometric Mapping of Chemical Compounds for the Development of Algorithms for Machine Learning and Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A32%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Mass%20Spectrometric%20Mapping%20of%20Chemical%20Compounds%20for%20the%20Development%20of%20Algorithms%20for%20Machine%20Learning%20and%20Artificial%20Intelligence&rft.jtitle=Doklady.%20Physical%20chemistry%20(1991)&rft.au=Burykina,%20J.%20V.&rft.date=2020-05-01&rft.volume=492&rft.issue=1&rft.spage=51&rft.epage=56&rft.pages=51-56&rft.issn=0012-5016&rft.eissn=1608-3121&rft_id=info:doi/10.1134/S0012501620050024&rft_dat=%3Cproquest_cross%3E2451546098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451546098&rft_id=info:pmid/&rfr_iscdi=true