Novel Au nano-grating for detection of water in various electrolytes

This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2020-11, Vol.10 (11), p.4029-4036
Hauptverfasser: Ijaz, Mohsin, Aftab, Muhammad, Afsheen, Sumera, Iqbal, Tahir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4036
container_issue 11
container_start_page 4029
container_title Applied nanoscience
container_volume 10
creator Ijaz, Mohsin
Aftab, Muhammad
Afsheen, Sumera
Iqbal, Tahir
description This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.
doi_str_mv 10.1007/s13204-020-01520-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451545485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451545485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEtPYF-AUiXPBSetkPU7jrzTBBc5R2jlTp9KMpN20b0-gCG74YFvye8_Sj7FLAdcCQN9EkUsoMpCQgcDUDydsIkUJGaLQp787lOdsFuMWUmGhVY4Tdvvs99TyxcA72_lsE2zfdBvufOBr6qnuG99x7_jB9hR40_G9DY0fIqc2HYNvjz3FC3bmbBtp9jOn7O3-7nX5mK1eHp6Wi1VW56j6TCkQskIH9RotkK4lgdK2VHMQFtGV6LTQoAnKklBQrVSldFU5bV2lyOVTdjXm7oL_GCj2ZuuH0KWXRhYosMBijkklR1UdfIyBnNmF5t2GoxFgvoCZEZhJwMw3MHNIpnw0xSTuNhT-ov9xfQIOP23i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451545485</pqid></control><display><type>article</type><title>Novel Au nano-grating for detection of water in various electrolytes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ijaz, Mohsin ; Aftab, Muhammad ; Afsheen, Sumera ; Iqbal, Tahir</creator><creatorcontrib>Ijaz, Mohsin ; Aftab, Muhammad ; Afsheen, Sumera ; Iqbal, Tahir</creatorcontrib><description>This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-020-01520-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry and Materials Science ; Electrolytes ; Glass substrates ; Gold ; Hemoglobin ; Materials Science ; Mathematical models ; Membrane Biology ; Milk ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Noble metals ; Optimization ; Original Article ; Plasmonics ; Polaritons ; Refractivity ; Sensors ; Slits</subject><ispartof>Applied nanoscience, 2020-11, Vol.10 (11), p.4029-4036</ispartof><rights>King Abdulaziz City for Science and Technology 2020</rights><rights>King Abdulaziz City for Science and Technology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</citedby><cites>FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</cites><orcidid>0000-0002-2986-3809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-020-01520-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-020-01520-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ijaz, Mohsin</creatorcontrib><creatorcontrib>Aftab, Muhammad</creatorcontrib><creatorcontrib>Afsheen, Sumera</creatorcontrib><creatorcontrib>Iqbal, Tahir</creatorcontrib><title>Novel Au nano-grating for detection of water in various electrolytes</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.</description><subject>Chemistry and Materials Science</subject><subject>Electrolytes</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Hemoglobin</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Membrane Biology</subject><subject>Milk</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Noble metals</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Plasmonics</subject><subject>Polaritons</subject><subject>Refractivity</subject><subject>Sensors</subject><subject>Slits</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEtPYF-AUiXPBSetkPU7jrzTBBc5R2jlTp9KMpN20b0-gCG74YFvye8_Sj7FLAdcCQN9EkUsoMpCQgcDUDydsIkUJGaLQp787lOdsFuMWUmGhVY4Tdvvs99TyxcA72_lsE2zfdBvufOBr6qnuG99x7_jB9hR40_G9DY0fIqc2HYNvjz3FC3bmbBtp9jOn7O3-7nX5mK1eHp6Wi1VW56j6TCkQskIH9RotkK4lgdK2VHMQFtGV6LTQoAnKklBQrVSldFU5bV2lyOVTdjXm7oL_GCj2ZuuH0KWXRhYosMBijkklR1UdfIyBnNmF5t2GoxFgvoCZEZhJwMw3MHNIpnw0xSTuNhT-ov9xfQIOP23i</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ijaz, Mohsin</creator><creator>Aftab, Muhammad</creator><creator>Afsheen, Sumera</creator><creator>Iqbal, Tahir</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2986-3809</orcidid></search><sort><creationdate>20201101</creationdate><title>Novel Au nano-grating for detection of water in various electrolytes</title><author>Ijaz, Mohsin ; Aftab, Muhammad ; Afsheen, Sumera ; Iqbal, Tahir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Materials Science</topic><topic>Electrolytes</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Hemoglobin</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Membrane Biology</topic><topic>Milk</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Noble metals</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Plasmonics</topic><topic>Polaritons</topic><topic>Refractivity</topic><topic>Sensors</topic><topic>Slits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ijaz, Mohsin</creatorcontrib><creatorcontrib>Aftab, Muhammad</creatorcontrib><creatorcontrib>Afsheen, Sumera</creatorcontrib><creatorcontrib>Iqbal, Tahir</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ijaz, Mohsin</au><au>Aftab, Muhammad</au><au>Afsheen, Sumera</au><au>Iqbal, Tahir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Au nano-grating for detection of water in various electrolytes</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>11</issue><spage>4029</spage><epage>4036</epage><pages>4029-4036</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-020-01520-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2986-3809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2020-11, Vol.10 (11), p.4029-4036
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2451545485
source SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Electrolytes
Glass substrates
Gold
Hemoglobin
Materials Science
Mathematical models
Membrane Biology
Milk
Nanochemistry
Nanotechnology
Nanotechnology and Microengineering
Noble metals
Optimization
Original Article
Plasmonics
Polaritons
Refractivity
Sensors
Slits
title Novel Au nano-grating for detection of water in various electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Au%20nano-grating%20for%20detection%20of%20water%20in%20various%20electrolytes&rft.jtitle=Applied%20nanoscience&rft.au=Ijaz,%20Mohsin&rft.date=2020-11-01&rft.volume=10&rft.issue=11&rft.spage=4029&rft.epage=4036&rft.pages=4029-4036&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-020-01520-w&rft_dat=%3Cproquest_cross%3E2451545485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451545485&rft_id=info:pmid/&rfr_iscdi=true