Novel Au nano-grating for detection of water in various electrolytes
This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, he...
Gespeichert in:
Veröffentlicht in: | Applied nanoscience 2020-11, Vol.10 (11), p.4029-4036 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4036 |
---|---|
container_issue | 11 |
container_start_page | 4029 |
container_title | Applied nanoscience |
container_volume | 10 |
creator | Ijaz, Mohsin Aftab, Muhammad Afsheen, Sumera Iqbal, Tahir |
description | This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques. |
doi_str_mv | 10.1007/s13204-020-01520-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451545485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451545485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEtPYF-AUiXPBSetkPU7jrzTBBc5R2jlTp9KMpN20b0-gCG74YFvye8_Sj7FLAdcCQN9EkUsoMpCQgcDUDydsIkUJGaLQp787lOdsFuMWUmGhVY4Tdvvs99TyxcA72_lsE2zfdBvufOBr6qnuG99x7_jB9hR40_G9DY0fIqc2HYNvjz3FC3bmbBtp9jOn7O3-7nX5mK1eHp6Wi1VW56j6TCkQskIH9RotkK4lgdK2VHMQFtGV6LTQoAnKklBQrVSldFU5bV2lyOVTdjXm7oL_GCj2ZuuH0KWXRhYosMBijkklR1UdfIyBnNmF5t2GoxFgvoCZEZhJwMw3MHNIpnw0xSTuNhT-ov9xfQIOP23i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451545485</pqid></control><display><type>article</type><title>Novel Au nano-grating for detection of water in various electrolytes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ijaz, Mohsin ; Aftab, Muhammad ; Afsheen, Sumera ; Iqbal, Tahir</creator><creatorcontrib>Ijaz, Mohsin ; Aftab, Muhammad ; Afsheen, Sumera ; Iqbal, Tahir</creatorcontrib><description>This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-020-01520-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry and Materials Science ; Electrolytes ; Glass substrates ; Gold ; Hemoglobin ; Materials Science ; Mathematical models ; Membrane Biology ; Milk ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Noble metals ; Optimization ; Original Article ; Plasmonics ; Polaritons ; Refractivity ; Sensors ; Slits</subject><ispartof>Applied nanoscience, 2020-11, Vol.10 (11), p.4029-4036</ispartof><rights>King Abdulaziz City for Science and Technology 2020</rights><rights>King Abdulaziz City for Science and Technology 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</citedby><cites>FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</cites><orcidid>0000-0002-2986-3809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-020-01520-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-020-01520-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ijaz, Mohsin</creatorcontrib><creatorcontrib>Aftab, Muhammad</creatorcontrib><creatorcontrib>Afsheen, Sumera</creatorcontrib><creatorcontrib>Iqbal, Tahir</creatorcontrib><title>Novel Au nano-grating for detection of water in various electrolytes</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.</description><subject>Chemistry and Materials Science</subject><subject>Electrolytes</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Hemoglobin</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Membrane Biology</subject><subject>Milk</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Noble metals</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Plasmonics</subject><subject>Polaritons</subject><subject>Refractivity</subject><subject>Sensors</subject><subject>Slits</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEtPYF-AUiXPBSetkPU7jrzTBBc5R2jlTp9KMpN20b0-gCG74YFvye8_Sj7FLAdcCQN9EkUsoMpCQgcDUDydsIkUJGaLQp787lOdsFuMWUmGhVY4Tdvvs99TyxcA72_lsE2zfdBvufOBr6qnuG99x7_jB9hR40_G9DY0fIqc2HYNvjz3FC3bmbBtp9jOn7O3-7nX5mK1eHp6Wi1VW56j6TCkQskIH9RotkK4lgdK2VHMQFtGV6LTQoAnKklBQrVSldFU5bV2lyOVTdjXm7oL_GCj2ZuuH0KWXRhYosMBijkklR1UdfIyBnNmF5t2GoxFgvoCZEZhJwMw3MHNIpnw0xSTuNhT-ov9xfQIOP23i</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ijaz, Mohsin</creator><creator>Aftab, Muhammad</creator><creator>Afsheen, Sumera</creator><creator>Iqbal, Tahir</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2986-3809</orcidid></search><sort><creationdate>20201101</creationdate><title>Novel Au nano-grating for detection of water in various electrolytes</title><author>Ijaz, Mohsin ; Aftab, Muhammad ; Afsheen, Sumera ; Iqbal, Tahir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-66012b5f0cd5a0e7c2e067a96801a55f95f71707e099e51ec66b67bbf7afb6ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry and Materials Science</topic><topic>Electrolytes</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Hemoglobin</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Membrane Biology</topic><topic>Milk</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Noble metals</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Plasmonics</topic><topic>Polaritons</topic><topic>Refractivity</topic><topic>Sensors</topic><topic>Slits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ijaz, Mohsin</creatorcontrib><creatorcontrib>Aftab, Muhammad</creatorcontrib><creatorcontrib>Afsheen, Sumera</creatorcontrib><creatorcontrib>Iqbal, Tahir</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ijaz, Mohsin</au><au>Aftab, Muhammad</au><au>Afsheen, Sumera</au><au>Iqbal, Tahir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Au nano-grating for detection of water in various electrolytes</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>10</volume><issue>11</issue><spage>4029</spage><epage>4036</epage><pages>4029-4036</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>This paper reports an advanced and novel sensing idea by utilizing the concept of surface plasmon resonance. A numerically designed model of plasmonic-based sensor has been proposed that is capable of detecting the mixture of water in alcohol and in a variety of other electrolytes including milk, hemoglobin, octane, etc. The sensor uses gold as a recognition element with equidistant slits for the transmission of incoming light which give rise to plasmon polaritons on metal–dielectric–interface. The zeroth-order transmission spectra have been extracted for this investigation and optimization. A transverse magnetic wave illuminates the noble metal normally through a glass substrate generating surface plasmon polaritons (SPPs) on a particular wavelength which changes with respect to the refractive index of adjacent medium. The sensor model has been numerically solved after optimization of slit size by keeping other parameters fixed utilizing the fundamental plasmonic mode for efficient excitation of SPPs. In this sensing chip, a uniform spatial period of about 660 nm, a constant slit size of 320 nm, a gold thickness of 50 nm for sensing element and 500 nm for glass substrate are used. An appreciable increment in the value of refractive index sensitivity of 668.66 nm per RIU has been found which is noteworthy. Such sensors are likely been welcomed in biological investigation, along with chemical and environmental detection techniques.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-020-01520-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2986-3809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5509 |
ispartof | Applied nanoscience, 2020-11, Vol.10 (11), p.4029-4036 |
issn | 2190-5509 2190-5517 |
language | eng |
recordid | cdi_proquest_journals_2451545485 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry and Materials Science Electrolytes Glass substrates Gold Hemoglobin Materials Science Mathematical models Membrane Biology Milk Nanochemistry Nanotechnology Nanotechnology and Microengineering Noble metals Optimization Original Article Plasmonics Polaritons Refractivity Sensors Slits |
title | Novel Au nano-grating for detection of water in various electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Au%20nano-grating%20for%20detection%20of%20water%20in%20various%20electrolytes&rft.jtitle=Applied%20nanoscience&rft.au=Ijaz,%20Mohsin&rft.date=2020-11-01&rft.volume=10&rft.issue=11&rft.spage=4029&rft.epage=4036&rft.pages=4029-4036&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-020-01520-w&rft_dat=%3Cproquest_cross%3E2451545485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451545485&rft_id=info:pmid/&rfr_iscdi=true |