Computational evaluation of effective transport properties of differential microcellular structures

This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2020-11, Vol.66 (11), p.n/a
Hauptverfasser: Otaru, Abdulrazak J., Abdulkadir, Mukhtar, Corfield, Martin R., Kenfack, Anatole, Tanko, Nuradeen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title AIChE journal
container_volume 66
creator Otaru, Abdulrazak J.
Abdulkadir, Mukhtar
Corfield, Martin R.
Kenfack, Anatole
Tanko, Nuradeen
description This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.
doi_str_mv 10.1002/aic.16928
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451535492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451535492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnaQ9_A0FMPTiRZiqVjMP0JBHppz0KWV6CgxK4kp-Ttq8S99rTM8s0yOwg9ErwgGNOldmZBVpKKKzQjnNUll5hfoxnGmJR5QW7RXYy7rGgt6AyZpt8PY9LJ9QftCzhqP15E0dsCrAWT3BGKFPQhDn1IxRD6AUJyEM9E5zIS4JBcNu-dCb0B70evQxFTGE0aA8R7dGO1j_DwN-fo6_Xls3kvtx9vm2a9LU1VMVFKRltL646R1lAuCYOuEgQkGJCYym5lxaqlnaFYag3WWFsBlljWjAsBoqrm6Gm6mzN-jxCT2vVjyG9FRRknvOJM0kw9T1QOG2MAq4bg9jqcFMHq3KHKHapLh5ldTuyP83D6H1TrTTM5fgFhU3WC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451535492</pqid></control><display><type>article</type><title>Computational evaluation of effective transport properties of differential microcellular structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Otaru, Abdulrazak J. ; Abdulkadir, Mukhtar ; Corfield, Martin R. ; Kenfack, Anatole ; Tanko, Nuradeen</creator><creatorcontrib>Otaru, Abdulrazak J. ; Abdulkadir, Mukhtar ; Corfield, Martin R. ; Kenfack, Anatole ; Tanko, Nuradeen</creatorcontrib><description>This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16928</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>advanced imaging ; Aluminum ; CFD ; Computational fluid dynamics ; Computer applications ; Computer programs ; Fluid dynamics ; Foams ; Hydrodynamics ; Image analysis ; Image processing ; Mathematical models ; Metal foams ; Nickel base alloys ; porous metallic structures ; Pressure drop ; Software ; Superalloys ; Transport properties</subject><ispartof>AIChE journal, 2020-11, Vol.66 (11), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</citedby><cites>FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</cites><orcidid>0000-0002-3057-4991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.16928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.16928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Otaru, Abdulrazak J.</creatorcontrib><creatorcontrib>Abdulkadir, Mukhtar</creatorcontrib><creatorcontrib>Corfield, Martin R.</creatorcontrib><creatorcontrib>Kenfack, Anatole</creatorcontrib><creatorcontrib>Tanko, Nuradeen</creatorcontrib><title>Computational evaluation of effective transport properties of differential microcellular structures</title><title>AIChE journal</title><description>This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.</description><subject>advanced imaging</subject><subject>Aluminum</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Fluid dynamics</subject><subject>Foams</subject><subject>Hydrodynamics</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Metal foams</subject><subject>Nickel base alloys</subject><subject>porous metallic structures</subject><subject>Pressure drop</subject><subject>Software</subject><subject>Superalloys</subject><subject>Transport properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnaQ9_A0FMPTiRZiqVjMP0JBHppz0KWV6CgxK4kp-Ttq8S99rTM8s0yOwg9ErwgGNOldmZBVpKKKzQjnNUll5hfoxnGmJR5QW7RXYy7rGgt6AyZpt8PY9LJ9QftCzhqP15E0dsCrAWT3BGKFPQhDn1IxRD6AUJyEM9E5zIS4JBcNu-dCb0B70evQxFTGE0aA8R7dGO1j_DwN-fo6_Xls3kvtx9vm2a9LU1VMVFKRltL646R1lAuCYOuEgQkGJCYym5lxaqlnaFYag3WWFsBlljWjAsBoqrm6Gm6mzN-jxCT2vVjyG9FRRknvOJM0kw9T1QOG2MAq4bg9jqcFMHq3KHKHapLh5ldTuyP83D6H1TrTTM5fgFhU3WC</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Otaru, Abdulrazak J.</creator><creator>Abdulkadir, Mukhtar</creator><creator>Corfield, Martin R.</creator><creator>Kenfack, Anatole</creator><creator>Tanko, Nuradeen</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3057-4991</orcidid></search><sort><creationdate>202011</creationdate><title>Computational evaluation of effective transport properties of differential microcellular structures</title><author>Otaru, Abdulrazak J. ; Abdulkadir, Mukhtar ; Corfield, Martin R. ; Kenfack, Anatole ; Tanko, Nuradeen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>advanced imaging</topic><topic>Aluminum</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Fluid dynamics</topic><topic>Foams</topic><topic>Hydrodynamics</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Metal foams</topic><topic>Nickel base alloys</topic><topic>porous metallic structures</topic><topic>Pressure drop</topic><topic>Software</topic><topic>Superalloys</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otaru, Abdulrazak J.</creatorcontrib><creatorcontrib>Abdulkadir, Mukhtar</creatorcontrib><creatorcontrib>Corfield, Martin R.</creatorcontrib><creatorcontrib>Kenfack, Anatole</creatorcontrib><creatorcontrib>Tanko, Nuradeen</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otaru, Abdulrazak J.</au><au>Abdulkadir, Mukhtar</au><au>Corfield, Martin R.</au><au>Kenfack, Anatole</au><au>Tanko, Nuradeen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational evaluation of effective transport properties of differential microcellular structures</atitle><jtitle>AIChE journal</jtitle><date>2020-11</date><risdate>2020</risdate><volume>66</volume><issue>11</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.16928</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3057-4991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2020-11, Vol.66 (11), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2451535492
source Wiley Online Library Journals Frontfile Complete
subjects advanced imaging
Aluminum
CFD
Computational fluid dynamics
Computer applications
Computer programs
Fluid dynamics
Foams
Hydrodynamics
Image analysis
Image processing
Mathematical models
Metal foams
Nickel base alloys
porous metallic structures
Pressure drop
Software
Superalloys
Transport properties
title Computational evaluation of effective transport properties of differential microcellular structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20evaluation%20of%20effective%20transport%20properties%20of%20differential%20microcellular%20structures&rft.jtitle=AIChE%20journal&rft.au=Otaru,%20Abdulrazak%20J.&rft.date=2020-11&rft.volume=66&rft.issue=11&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16928&rft_dat=%3Cproquest_cross%3E2451535492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451535492&rft_id=info:pmid/&rfr_iscdi=true