Computational evaluation of effective transport properties of differential microcellular structures
This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2020-11, Vol.66 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | AIChE journal |
container_volume | 66 |
creator | Otaru, Abdulrazak J. Abdulkadir, Mukhtar Corfield, Martin R. Kenfack, Anatole Tanko, Nuradeen |
description | This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport. |
doi_str_mv | 10.1002/aic.16928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451535492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451535492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnaQ9_A0FMPTiRZiqVjMP0JBHppz0KWV6CgxK4kp-Ttq8S99rTM8s0yOwg9ErwgGNOldmZBVpKKKzQjnNUll5hfoxnGmJR5QW7RXYy7rGgt6AyZpt8PY9LJ9QftCzhqP15E0dsCrAWT3BGKFPQhDn1IxRD6AUJyEM9E5zIS4JBcNu-dCb0B70evQxFTGE0aA8R7dGO1j_DwN-fo6_Xls3kvtx9vm2a9LU1VMVFKRltL646R1lAuCYOuEgQkGJCYym5lxaqlnaFYag3WWFsBlljWjAsBoqrm6Gm6mzN-jxCT2vVjyG9FRRknvOJM0kw9T1QOG2MAq4bg9jqcFMHq3KHKHapLh5ldTuyP83D6H1TrTTM5fgFhU3WC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451535492</pqid></control><display><type>article</type><title>Computational evaluation of effective transport properties of differential microcellular structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Otaru, Abdulrazak J. ; Abdulkadir, Mukhtar ; Corfield, Martin R. ; Kenfack, Anatole ; Tanko, Nuradeen</creator><creatorcontrib>Otaru, Abdulrazak J. ; Abdulkadir, Mukhtar ; Corfield, Martin R. ; Kenfack, Anatole ; Tanko, Nuradeen</creatorcontrib><description>This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16928</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>advanced imaging ; Aluminum ; CFD ; Computational fluid dynamics ; Computer applications ; Computer programs ; Fluid dynamics ; Foams ; Hydrodynamics ; Image analysis ; Image processing ; Mathematical models ; Metal foams ; Nickel base alloys ; porous metallic structures ; Pressure drop ; Software ; Superalloys ; Transport properties</subject><ispartof>AIChE journal, 2020-11, Vol.66 (11), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</citedby><cites>FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</cites><orcidid>0000-0002-3057-4991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.16928$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.16928$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Otaru, Abdulrazak J.</creatorcontrib><creatorcontrib>Abdulkadir, Mukhtar</creatorcontrib><creatorcontrib>Corfield, Martin R.</creatorcontrib><creatorcontrib>Kenfack, Anatole</creatorcontrib><creatorcontrib>Tanko, Nuradeen</creatorcontrib><title>Computational evaluation of effective transport properties of differential microcellular structures</title><title>AIChE journal</title><description>This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.</description><subject>advanced imaging</subject><subject>Aluminum</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer programs</subject><subject>Fluid dynamics</subject><subject>Foams</subject><subject>Hydrodynamics</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Metal foams</subject><subject>Nickel base alloys</subject><subject>porous metallic structures</subject><subject>Pressure drop</subject><subject>Software</subject><subject>Superalloys</subject><subject>Transport properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnaQ9_A0FMPTiRZiqVjMP0JBHppz0KWV6CgxK4kp-Ttq8S99rTM8s0yOwg9ErwgGNOldmZBVpKKKzQjnNUll5hfoxnGmJR5QW7RXYy7rGgt6AyZpt8PY9LJ9QftCzhqP15E0dsCrAWT3BGKFPQhDn1IxRD6AUJyEM9E5zIS4JBcNu-dCb0B70evQxFTGE0aA8R7dGO1j_DwN-fo6_Xls3kvtx9vm2a9LU1VMVFKRltL646R1lAuCYOuEgQkGJCYym5lxaqlnaFYag3WWFsBlljWjAsBoqrm6Gm6mzN-jxCT2vVjyG9FRRknvOJM0kw9T1QOG2MAq4bg9jqcFMHq3KHKHapLh5ldTuyP83D6H1TrTTM5fgFhU3WC</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Otaru, Abdulrazak J.</creator><creator>Abdulkadir, Mukhtar</creator><creator>Corfield, Martin R.</creator><creator>Kenfack, Anatole</creator><creator>Tanko, Nuradeen</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3057-4991</orcidid></search><sort><creationdate>202011</creationdate><title>Computational evaluation of effective transport properties of differential microcellular structures</title><author>Otaru, Abdulrazak J. ; Abdulkadir, Mukhtar ; Corfield, Martin R. ; Kenfack, Anatole ; Tanko, Nuradeen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3348-942bf27d41bc25914ed381e9ece9029d6f86b2dc209aaefcff3e090974588e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>advanced imaging</topic><topic>Aluminum</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer programs</topic><topic>Fluid dynamics</topic><topic>Foams</topic><topic>Hydrodynamics</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Metal foams</topic><topic>Nickel base alloys</topic><topic>porous metallic structures</topic><topic>Pressure drop</topic><topic>Software</topic><topic>Superalloys</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otaru, Abdulrazak J.</creatorcontrib><creatorcontrib>Abdulkadir, Mukhtar</creatorcontrib><creatorcontrib>Corfield, Martin R.</creatorcontrib><creatorcontrib>Kenfack, Anatole</creatorcontrib><creatorcontrib>Tanko, Nuradeen</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otaru, Abdulrazak J.</au><au>Abdulkadir, Mukhtar</au><au>Corfield, Martin R.</au><au>Kenfack, Anatole</au><au>Tanko, Nuradeen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational evaluation of effective transport properties of differential microcellular structures</atitle><jtitle>AIChE journal</jtitle><date>2020-11</date><risdate>2020</risdate><volume>66</volume><issue>11</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This study presents a combined implementation of three‐dimensional (3D) advanced imaging and computational fluid dynamics (CFD) modeling and simulation techniques to interpret the effective transport properties of single and stacked samples of differential microcellular structures. 3D morphological analysis software (ScanIP) was used to create representative elemental volumes via high‐resolution tomography data for samples of tetrakaidekahedron‐shaped Inconel and bottleneck‐type aluminum foams. Pore‐structure‐related information for single and stacked differential samples were obtained with the aid of image analysis software, while their effective transport properties were attained by computationally resolving the pressure drop developed across these materials for superficial fluid velocities in the range from 0 to 6 m s−1. Model validation was demonstrated by tolerable agreement between resulting CFD predicted results and experimentally measured values of flow properties. With these techniques, contributory effects were identified for pore‐structure‐related properties, pore density, and flow entrance on the flow dynamics of microcellular structures. This approach could prove useful in the design of highly efficient porous metallic components for applications specific to fluid transport.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.16928</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3057-4991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2020-11, Vol.66 (11), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2451535492 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | advanced imaging Aluminum CFD Computational fluid dynamics Computer applications Computer programs Fluid dynamics Foams Hydrodynamics Image analysis Image processing Mathematical models Metal foams Nickel base alloys porous metallic structures Pressure drop Software Superalloys Transport properties |
title | Computational evaluation of effective transport properties of differential microcellular structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A03%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20evaluation%20of%20effective%20transport%20properties%20of%20differential%20microcellular%20structures&rft.jtitle=AIChE%20journal&rft.au=Otaru,%20Abdulrazak%20J.&rft.date=2020-11&rft.volume=66&rft.issue=11&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16928&rft_dat=%3Cproquest_cross%3E2451535492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451535492&rft_id=info:pmid/&rfr_iscdi=true |