Sequential Likelihood-Free Inference with Neural Proposal
Bayesian inference without the likelihood evaluation, or likelihood-free inference, has been a key research topic in simulation studies for gaining quantitatively validated simulation models on real-world datasets. As the likelihood evaluation is inaccessible, previous papers train the amortized neu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kim, Dongjun Song, Kyungwoo Kim, YoonYeong Shin, Yongjin Kang, Wanmo Il-Chul Moon Joo, Weonyoung |
description | Bayesian inference without the likelihood evaluation, or likelihood-free inference, has been a key research topic in simulation studies for gaining quantitatively validated simulation models on real-world datasets. As the likelihood evaluation is inaccessible, previous papers train the amortized neural network to estimate the ground-truth posterior for the simulation of interest. Training the network and accumulating the dataset alternatively in a sequential manner could save the total simulation budget by orders of magnitude. In the data accumulation phase, the new simulation inputs are chosen within a portion of the total simulation budget to accumulate upon the collected dataset. This newly accumulated data degenerates because the set of simulation inputs is hardly mixed, and this degenerated data collection process ruins the posterior inference. This paper introduces a new sampling approach, called Neural Proposal (NP), of the simulation input that resolves the biased data collection as it guarantees the i.i.d. sampling. The experiments show the improved performance of our sampler, especially for the simulations with multi-modal posteriors. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2451458174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451458174</sourcerecordid><originalsourceid>FETCH-proquest_journals_24514581743</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3CLgOpPnYuhaLgoig-xLqK00NSc0Hr28WHsDVLGaYBSoY5xVpBGMrVIYwUUrZrmZS8gLt7_BOYKNWBl_0C4wenXuS1gPgsx3Ag-0Bf3Qc8RWSz9XNu9kFZTZoOSgToPxxjbbt8XE4kdm7vAyxm1zyNquOCVkJ2VS14P9VX4uINoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451458174</pqid></control><display><type>article</type><title>Sequential Likelihood-Free Inference with Neural Proposal</title><source>Free E- Journals</source><creator>Kim, Dongjun ; Song, Kyungwoo ; Kim, YoonYeong ; Shin, Yongjin ; Kang, Wanmo ; Il-Chul Moon ; Joo, Weonyoung</creator><creatorcontrib>Kim, Dongjun ; Song, Kyungwoo ; Kim, YoonYeong ; Shin, Yongjin ; Kang, Wanmo ; Il-Chul Moon ; Joo, Weonyoung</creatorcontrib><description>Bayesian inference without the likelihood evaluation, or likelihood-free inference, has been a key research topic in simulation studies for gaining quantitatively validated simulation models on real-world datasets. As the likelihood evaluation is inaccessible, previous papers train the amortized neural network to estimate the ground-truth posterior for the simulation of interest. Training the network and accumulating the dataset alternatively in a sequential manner could save the total simulation budget by orders of magnitude. In the data accumulation phase, the new simulation inputs are chosen within a portion of the total simulation budget to accumulate upon the collected dataset. This newly accumulated data degenerates because the set of simulation inputs is hardly mixed, and this degenerated data collection process ruins the posterior inference. This paper introduces a new sampling approach, called Neural Proposal (NP), of the simulation input that resolves the biased data collection as it guarantees the i.i.d. sampling. The experiments show the improved performance of our sampler, especially for the simulations with multi-modal posteriors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bayesian analysis ; Density ; Markov chains ; Sampling methods ; Simulation ; Statistical inference</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kim, Dongjun</creatorcontrib><creatorcontrib>Song, Kyungwoo</creatorcontrib><creatorcontrib>Kim, YoonYeong</creatorcontrib><creatorcontrib>Shin, Yongjin</creatorcontrib><creatorcontrib>Kang, Wanmo</creatorcontrib><creatorcontrib>Il-Chul Moon</creatorcontrib><creatorcontrib>Joo, Weonyoung</creatorcontrib><title>Sequential Likelihood-Free Inference with Neural Proposal</title><title>arXiv.org</title><description>Bayesian inference without the likelihood evaluation, or likelihood-free inference, has been a key research topic in simulation studies for gaining quantitatively validated simulation models on real-world datasets. As the likelihood evaluation is inaccessible, previous papers train the amortized neural network to estimate the ground-truth posterior for the simulation of interest. Training the network and accumulating the dataset alternatively in a sequential manner could save the total simulation budget by orders of magnitude. In the data accumulation phase, the new simulation inputs are chosen within a portion of the total simulation budget to accumulate upon the collected dataset. This newly accumulated data degenerates because the set of simulation inputs is hardly mixed, and this degenerated data collection process ruins the posterior inference. This paper introduces a new sampling approach, called Neural Proposal (NP), of the simulation input that resolves the biased data collection as it guarantees the i.i.d. sampling. The experiments show the improved performance of our sampler, especially for the simulations with multi-modal posteriors.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Density</subject><subject>Markov chains</subject><subject>Sampling methods</subject><subject>Simulation</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3CLgOpPnYuhaLgoig-xLqK00NSc0Hr28WHsDVLGaYBSoY5xVpBGMrVIYwUUrZrmZS8gLt7_BOYKNWBl_0C4wenXuS1gPgsx3Ag-0Bf3Qc8RWSz9XNu9kFZTZoOSgToPxxjbbt8XE4kdm7vAyxm1zyNquOCVkJ2VS14P9VX4uINoA</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>Kim, Dongjun</creator><creator>Song, Kyungwoo</creator><creator>Kim, YoonYeong</creator><creator>Shin, Yongjin</creator><creator>Kang, Wanmo</creator><creator>Il-Chul Moon</creator><creator>Joo, Weonyoung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20221104</creationdate><title>Sequential Likelihood-Free Inference with Neural Proposal</title><author>Kim, Dongjun ; Song, Kyungwoo ; Kim, YoonYeong ; Shin, Yongjin ; Kang, Wanmo ; Il-Chul Moon ; Joo, Weonyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24514581743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Density</topic><topic>Markov chains</topic><topic>Sampling methods</topic><topic>Simulation</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Dongjun</creatorcontrib><creatorcontrib>Song, Kyungwoo</creatorcontrib><creatorcontrib>Kim, YoonYeong</creatorcontrib><creatorcontrib>Shin, Yongjin</creatorcontrib><creatorcontrib>Kang, Wanmo</creatorcontrib><creatorcontrib>Il-Chul Moon</creatorcontrib><creatorcontrib>Joo, Weonyoung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Dongjun</au><au>Song, Kyungwoo</au><au>Kim, YoonYeong</au><au>Shin, Yongjin</au><au>Kang, Wanmo</au><au>Il-Chul Moon</au><au>Joo, Weonyoung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sequential Likelihood-Free Inference with Neural Proposal</atitle><jtitle>arXiv.org</jtitle><date>2022-11-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Bayesian inference without the likelihood evaluation, or likelihood-free inference, has been a key research topic in simulation studies for gaining quantitatively validated simulation models on real-world datasets. As the likelihood evaluation is inaccessible, previous papers train the amortized neural network to estimate the ground-truth posterior for the simulation of interest. Training the network and accumulating the dataset alternatively in a sequential manner could save the total simulation budget by orders of magnitude. In the data accumulation phase, the new simulation inputs are chosen within a portion of the total simulation budget to accumulate upon the collected dataset. This newly accumulated data degenerates because the set of simulation inputs is hardly mixed, and this degenerated data collection process ruins the posterior inference. This paper introduces a new sampling approach, called Neural Proposal (NP), of the simulation input that resolves the biased data collection as it guarantees the i.i.d. sampling. The experiments show the improved performance of our sampler, especially for the simulations with multi-modal posteriors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2451458174 |
source | Free E- Journals |
subjects | Algorithms Bayesian analysis Density Markov chains Sampling methods Simulation Statistical inference |
title | Sequential Likelihood-Free Inference with Neural Proposal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sequential%20Likelihood-Free%20Inference%20with%20Neural%20Proposal&rft.jtitle=arXiv.org&rft.au=Kim,%20Dongjun&rft.date=2022-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2451458174%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451458174&rft_id=info:pmid/&rfr_iscdi=true |