Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting

Amorphous ternary metal borides in the form of Co-M-B (where, M = Fe, Ni, Cu, Mo, Mn, W or Cr) were developed for electrocatalytic hydrogen evolution in neutral and alkaline solutions. Except for Co-Cr-B, all the Co-M-B catalysts showed better hydrogen evolution rate than Co-B, with the lowest overp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-09, Vol.354, p.136738, Article 136738
Hauptverfasser: Fernandes, R., Chunduri, A., Gupta, S., Kadrekar, R., Arya, A., Miotello, A., Patel, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amorphous ternary metal borides in the form of Co-M-B (where, M = Fe, Ni, Cu, Mo, Mn, W or Cr) were developed for electrocatalytic hydrogen evolution in neutral and alkaline solutions. Except for Co-Cr-B, all the Co-M-B catalysts showed better hydrogen evolution rate than Co-B, with the lowest overpotential of 95 mV and 67 mV (at 10 mA/cm2) recorded for optimized Co-Mo-B catalyst, in pH 7 and pH 14, respectively. The reasons for enhancement in electrocatalytic rate, with inclusion of a second metal in Co-B, were investigated by considering several material related factors, such as, physical and electrochemical surface area, turn-over frequency, surface elemental states & composition and charge-transfer resistance. These experimental results were complemented with computational investigations to identify the most suitable sites for hydrogen adsorption and determine their H-adsorption energies. In the end, industrial feasibility of the developed Co-M-B catalysts was illustrated by performing stability and recycling tests.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2020.136738