Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process

Material and charge balances in the course of the electropolymerization process of the non-substituted Mg(II) porphine (MgP) at a low oxidation potential from its acetonitrile solutions of various concentrations have been studied via the in situ electrochemical quartz crystal microbalance method (EQ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2020-11, Vol.24 (11-12), p.3191-3206
Hauptverfasser: Istakova, O. I., Konev, D. V., Goncharova, O. A., Antipov, A. E., Devillers, C. H., Vorotyntsev, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3206
container_issue 11-12
container_start_page 3191
container_title Journal of solid state electrochemistry
container_volume 24
creator Istakova, O. I.
Konev, D. V.
Goncharova, O. A.
Antipov, A. E.
Devillers, C. H.
Vorotyntsev, M. A.
description Material and charge balances in the course of the electropolymerization process of the non-substituted Mg(II) porphine (MgP) at a low oxidation potential from its acetonitrile solutions of various concentrations have been studied via the in situ electrochemical quartz crystal microbalance method (EQCM). Thus, registered electrode mass increase due to the MgP oxidation at its surface has been used, in combination with in situ spectroelectrochemical data, for determination of the key parameters of the polymerization process and of the magnesium polyporphine films deposited on the electrode surface: current efficiency of the film deposition process, average charge spent for transformation of a monomer molecule into monomer unit inside the film, number of monomer units inside the deposited film, average number of valence bonds per one monomer unit inside the film. Besides, the EQCM method applied to the discharge process of the electropolymerized film has allowed us to estimate the average charging (oxidation) degree of the monomer unit inside the film at the polymerization potential and the degree of the solvent participation in the course of the polymer’s redox transitions. It has been established that the number of bonds between porphine units is within the range of 2.2 to 2.4, with its slight increase for films deposited at higher monomer concentrations. Conclusions on the structure of polyporphine chains have been made.
doi_str_mv 10.1007/s10008-020-04800-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451400014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451400014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-ed3beb95f2c55cafe533574504df052cf79d7a9723e2559fdc60675481ee1bf73</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqXwApwicQ6Mtzg5oqosUiUucLYcZ9ymylY7ObRPj2mQuHGZTfP_o_kIuafwSAHUU4gR8hQYpCBygJRekAUVnKegsvzyXLM0F3l-TW5C2ANQlVFYEFw3aEff2x22tTVNcpiMH0-J9ccwxjYOfV-axnQWkzBO1THpXdKabYehntpk6P2wqztMcPYZ-ubYoq9PZqz7LhmiM4ZwS66caQLe_eYl-XpZf67e0s3H6_vqeZNaLrMxxYqXWBbSMSulNQ4l51IJCaJyIJl1qqiUKRTjyKQsXGUzyJQUOUWkpVN8SR5m33j3MGEY9b6ffBdPaiYkFRFSBLEkbN6Kr4Xg0enB163xR01B_-DUM04dceozTk2jiM-iEJe7Lfo_639U3_oAetQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451400014</pqid></control><display><type>article</type><title>Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process</title><source>SpringerNature Journals</source><creator>Istakova, O. I. ; Konev, D. V. ; Goncharova, O. A. ; Antipov, A. E. ; Devillers, C. H. ; Vorotyntsev, M. A.</creator><creatorcontrib>Istakova, O. I. ; Konev, D. V. ; Goncharova, O. A. ; Antipov, A. E. ; Devillers, C. H. ; Vorotyntsev, M. A.</creatorcontrib><description>Material and charge balances in the course of the electropolymerization process of the non-substituted Mg(II) porphine (MgP) at a low oxidation potential from its acetonitrile solutions of various concentrations have been studied via the in situ electrochemical quartz crystal microbalance method (EQCM). Thus, registered electrode mass increase due to the MgP oxidation at its surface has been used, in combination with in situ spectroelectrochemical data, for determination of the key parameters of the polymerization process and of the magnesium polyporphine films deposited on the electrode surface: current efficiency of the film deposition process, average charge spent for transformation of a monomer molecule into monomer unit inside the film, number of monomer units inside the deposited film, average number of valence bonds per one monomer unit inside the film. Besides, the EQCM method applied to the discharge process of the electropolymerized film has allowed us to estimate the average charging (oxidation) degree of the monomer unit inside the film at the polymerization potential and the degree of the solvent participation in the course of the polymer’s redox transitions. It has been established that the number of bonds between porphine units is within the range of 2.2 to 2.4, with its slight increase for films deposited at higher monomer concentrations. Conclusions on the structure of polyporphine chains have been made.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-020-04800-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acetonitrile ; Analytical Chemistry ; Characterization and Evaluation of Materials ; Charge deposition ; Charge materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Current efficiency ; Electrochemistry ; Electrodes ; Energy Storage ; Magnesium ; Microbalances ; Monomers ; Original Paper ; Oxidation ; Physical Chemistry ; Polymerization ; Process parameters ; Quartz ; Quartz crystals</subject><ispartof>Journal of solid state electrochemistry, 2020-11, Vol.24 (11-12), p.3191-3206</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-ed3beb95f2c55cafe533574504df052cf79d7a9723e2559fdc60675481ee1bf73</citedby><cites>FETCH-LOGICAL-c356t-ed3beb95f2c55cafe533574504df052cf79d7a9723e2559fdc60675481ee1bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-020-04800-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-020-04800-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Istakova, O. I.</creatorcontrib><creatorcontrib>Konev, D. V.</creatorcontrib><creatorcontrib>Goncharova, O. A.</creatorcontrib><creatorcontrib>Antipov, A. E.</creatorcontrib><creatorcontrib>Devillers, C. H.</creatorcontrib><creatorcontrib>Vorotyntsev, M. A.</creatorcontrib><title>Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Material and charge balances in the course of the electropolymerization process of the non-substituted Mg(II) porphine (MgP) at a low oxidation potential from its acetonitrile solutions of various concentrations have been studied via the in situ electrochemical quartz crystal microbalance method (EQCM). Thus, registered electrode mass increase due to the MgP oxidation at its surface has been used, in combination with in situ spectroelectrochemical data, for determination of the key parameters of the polymerization process and of the magnesium polyporphine films deposited on the electrode surface: current efficiency of the film deposition process, average charge spent for transformation of a monomer molecule into monomer unit inside the film, number of monomer units inside the deposited film, average number of valence bonds per one monomer unit inside the film. Besides, the EQCM method applied to the discharge process of the electropolymerized film has allowed us to estimate the average charging (oxidation) degree of the monomer unit inside the film at the polymerization potential and the degree of the solvent participation in the course of the polymer’s redox transitions. It has been established that the number of bonds between porphine units is within the range of 2.2 to 2.4, with its slight increase for films deposited at higher monomer concentrations. Conclusions on the structure of polyporphine chains have been made.</description><subject>Acetonitrile</subject><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge deposition</subject><subject>Charge materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Current efficiency</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy Storage</subject><subject>Magnesium</subject><subject>Microbalances</subject><subject>Monomers</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Polymerization</subject><subject>Process parameters</subject><subject>Quartz</subject><subject>Quartz crystals</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EEqXwApwicQ6Mtzg5oqosUiUucLYcZ9ymylY7ObRPj2mQuHGZTfP_o_kIuafwSAHUU4gR8hQYpCBygJRekAUVnKegsvzyXLM0F3l-TW5C2ANQlVFYEFw3aEff2x22tTVNcpiMH0-J9ccwxjYOfV-axnQWkzBO1THpXdKabYehntpk6P2wqztMcPYZ-ubYoq9PZqz7LhmiM4ZwS66caQLe_eYl-XpZf67e0s3H6_vqeZNaLrMxxYqXWBbSMSulNQ4l51IJCaJyIJl1qqiUKRTjyKQsXGUzyJQUOUWkpVN8SR5m33j3MGEY9b6ffBdPaiYkFRFSBLEkbN6Kr4Xg0enB163xR01B_-DUM04dceozTk2jiM-iEJe7Lfo_639U3_oAetQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Istakova, O. I.</creator><creator>Konev, D. V.</creator><creator>Goncharova, O. A.</creator><creator>Antipov, A. E.</creator><creator>Devillers, C. H.</creator><creator>Vorotyntsev, M. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process</title><author>Istakova, O. I. ; Konev, D. V. ; Goncharova, O. A. ; Antipov, A. E. ; Devillers, C. H. ; Vorotyntsev, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-ed3beb95f2c55cafe533574504df052cf79d7a9723e2559fdc60675481ee1bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetonitrile</topic><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge deposition</topic><topic>Charge materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Current efficiency</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy Storage</topic><topic>Magnesium</topic><topic>Microbalances</topic><topic>Monomers</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Polymerization</topic><topic>Process parameters</topic><topic>Quartz</topic><topic>Quartz crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Istakova, O. I.</creatorcontrib><creatorcontrib>Konev, D. V.</creatorcontrib><creatorcontrib>Goncharova, O. A.</creatorcontrib><creatorcontrib>Antipov, A. E.</creatorcontrib><creatorcontrib>Devillers, C. H.</creatorcontrib><creatorcontrib>Vorotyntsev, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Istakova, O. I.</au><au>Konev, D. V.</au><au>Goncharova, O. A.</au><au>Antipov, A. E.</au><au>Devillers, C. H.</au><au>Vorotyntsev, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>24</volume><issue>11-12</issue><spage>3191</spage><epage>3206</epage><pages>3191-3206</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Material and charge balances in the course of the electropolymerization process of the non-substituted Mg(II) porphine (MgP) at a low oxidation potential from its acetonitrile solutions of various concentrations have been studied via the in situ electrochemical quartz crystal microbalance method (EQCM). Thus, registered electrode mass increase due to the MgP oxidation at its surface has been used, in combination with in situ spectroelectrochemical data, for determination of the key parameters of the polymerization process and of the magnesium polyporphine films deposited on the electrode surface: current efficiency of the film deposition process, average charge spent for transformation of a monomer molecule into monomer unit inside the film, number of monomer units inside the deposited film, average number of valence bonds per one monomer unit inside the film. Besides, the EQCM method applied to the discharge process of the electropolymerized film has allowed us to estimate the average charging (oxidation) degree of the monomer unit inside the film at the polymerization potential and the degree of the solvent participation in the course of the polymer’s redox transitions. It has been established that the number of bonds between porphine units is within the range of 2.2 to 2.4, with its slight increase for films deposited at higher monomer concentrations. Conclusions on the structure of polyporphine chains have been made.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-020-04800-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2020-11, Vol.24 (11-12), p.3191-3206
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2451400014
source SpringerNature Journals
subjects Acetonitrile
Analytical Chemistry
Characterization and Evaluation of Materials
Charge deposition
Charge materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Current efficiency
Electrochemistry
Electrodes
Energy Storage
Magnesium
Microbalances
Monomers
Original Paper
Oxidation
Physical Chemistry
Polymerization
Process parameters
Quartz
Quartz crystals
title Electrochemical quartz crystal microbalance study of magnesium porphine electropolymerization process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20quartz%20crystal%20microbalance%20study%20of%20magnesium%20porphine%20electropolymerization%20process&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Istakova,%20O.%20I.&rft.date=2020-11-01&rft.volume=24&rft.issue=11-12&rft.spage=3191&rft.epage=3206&rft.pages=3191-3206&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-020-04800-1&rft_dat=%3Cproquest_cross%3E2451400014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451400014&rft_id=info:pmid/&rfr_iscdi=true