Polymer/liquid crystal nanocomposites for energy storage applications

High‐dielectric constant (high‐K) polymer nanocomposites based on nematic liquid crystals and CaCu3Ti4O12 (CCTO) nanoparticles have been prepared. The host matrix is polymer dispersed liquid crystals (PDLC) in which LC (E7) droplets are dispersed in different polymer blends ratios of poly vinyl chlo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2020-10, Vol.60 (10), p.2529-2540
Hauptverfasser: Labeeb, A. M., Ibrahim, S. A., Ward, A. A., Abd‐El‐Messieh, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2540
container_issue 10
container_start_page 2529
container_title Polymer engineering and science
container_volume 60
creator Labeeb, A. M.
Ibrahim, S. A.
Ward, A. A.
Abd‐El‐Messieh, S. L.
description High‐dielectric constant (high‐K) polymer nanocomposites based on nematic liquid crystals and CaCu3Ti4O12 (CCTO) nanoparticles have been prepared. The host matrix is polymer dispersed liquid crystals (PDLC) in which LC (E7) droplets are dispersed in different polymer blends ratios of poly vinyl chloride/poly aniline (PVC/PANI). The PDLC (PVC/PANI/E7) in the appropriated ratios; (90/10/5), (75/25/5), and (50/50/5) were composited with 10 wt% CCTO nanoparticles. The IR spectra recorded for the PDLC nanocomposites present a spectrum similar to that of pure PDLC but with a slight shift of the peak positions. The addition of PANI and CCTO to PDLC enhances the thermal stability of the nanocomposites. SEM demonstrates agglomerates of CCTO dispersed in the polymer textures. Moreover, the addition of E7 facilitates the integration of PANI in PDLC matrix. The broadband dielectric spectrum shows high‐frequency relaxation in addition to low‐frequency interfacial polarization (Maxwell‐Wagner type polarization). Besides, ε′ at 50 Hz is in the order of 105 for PDLC/CCTO (50/50/5/10) nanocomposite. In addition, the computed energy density is found to be 74.66 J/cm3. This presumed ratio could be accentuated as a potential candidate for energy storage application with respect to the considerations of device fabrications.
doi_str_mv 10.1002/pen.25491
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2451395796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686637523</galeid><sourcerecordid>A686637523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5101-2e97dce17e270ffe9ba76c389598131ecce60713164044ebd7a8a2f65853ec53</originalsourceid><addsrcrecordid>eNp10l1r2zAUBmAzVljW7mL_wLCrwZzow5Lly1KyrVDW0vVeKMqxp2JLro5M538_dRlsgQyBJMTzHklwiuI9JWtKCNtM4NdM1C19VayoqFXFJK9fFytCOKu4UupN8RbxkWTLRbsqtndhWEaIm8E9zW5f2rhgMkPpjQ82jFNAlwDLLsQSPMR-KTGFaHoozTQNzprkgseL4qwzA8K7P-t58fB5-3D1tbq5_XJ9dXlTWUEJrRi0zd4CbYA1pOug3ZlGWq5a0SrKKVgLkjR5J2tS17DbN0YZ1kmhBAcr-Hnx4VB2iuFpBkz6MczR5xs1qwXlrWha-Vf1ZgDtfBdSNHZ0aPWlVFLyRjCeVXVC9S-fNEPw0Ll8fOTXJ3weexidPRn4eBTIJsHP1JsZUV9_vz-2n_6xuxmdB8wTuv5HwkPkVGkbA2KETk_RjSYumhL90gY6t4H-3QbZbg72Ob9v-T_Ud9tvh8QvmBmxNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451395796</pqid></control><display><type>article</type><title>Polymer/liquid crystal nanocomposites for energy storage applications</title><source>Wiley Online Library All Journals</source><creator>Labeeb, A. M. ; Ibrahim, S. A. ; Ward, A. A. ; Abd‐El‐Messieh, S. L.</creator><creatorcontrib>Labeeb, A. M. ; Ibrahim, S. A. ; Ward, A. A. ; Abd‐El‐Messieh, S. L.</creatorcontrib><description>High‐dielectric constant (high‐K) polymer nanocomposites based on nematic liquid crystals and CaCu3Ti4O12 (CCTO) nanoparticles have been prepared. The host matrix is polymer dispersed liquid crystals (PDLC) in which LC (E7) droplets are dispersed in different polymer blends ratios of poly vinyl chloride/poly aniline (PVC/PANI). The PDLC (PVC/PANI/E7) in the appropriated ratios; (90/10/5), (75/25/5), and (50/50/5) were composited with 10 wt% CCTO nanoparticles. The IR spectra recorded for the PDLC nanocomposites present a spectrum similar to that of pure PDLC but with a slight shift of the peak positions. The addition of PANI and CCTO to PDLC enhances the thermal stability of the nanocomposites. SEM demonstrates agglomerates of CCTO dispersed in the polymer textures. Moreover, the addition of E7 facilitates the integration of PANI in PDLC matrix. The broadband dielectric spectrum shows high‐frequency relaxation in addition to low‐frequency interfacial polarization (Maxwell‐Wagner type polarization). Besides, ε′ at 50 Hz is in the order of 105 for PDLC/CCTO (50/50/5/10) nanocomposite. In addition, the computed energy density is found to be 74.66 J/cm3. This presumed ratio could be accentuated as a potential candidate for energy storage application with respect to the considerations of device fabrications.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.25491</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Addition polymerization ; Agglomerates ; Aniline ; Broadband ; calcium copper titanate CCTO nanoparticles ; conductivity ; dielectric properties ; Dielectric relaxation ; Dispersion ; Electric properties ; energy density ; Energy storage ; Flux density ; Identification and classification ; Infrared spectroscopy ; liquid crystal ; Liquid crystals ; Nanocomposites ; Nanoparticles ; Nematic crystals ; Polarization ; poly aniline ; poly vinyl chloride ; Polyanilines ; Polymer blends ; polymer dispersed liquid crystals ; Polymers ; Polyvinyl chloride ; Spectra ; Thermal stability</subject><ispartof>Polymer engineering and science, 2020-10, Vol.60 (10), p.2529-2540</ispartof><rights>2020 Society of Plastics Engineers</rights><rights>COPYRIGHT 2020 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5101-2e97dce17e270ffe9ba76c389598131ecce60713164044ebd7a8a2f65853ec53</citedby><cites>FETCH-LOGICAL-c5101-2e97dce17e270ffe9ba76c389598131ecce60713164044ebd7a8a2f65853ec53</cites><orcidid>0000-0003-0094-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.25491$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.25491$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Labeeb, A. M.</creatorcontrib><creatorcontrib>Ibrahim, S. A.</creatorcontrib><creatorcontrib>Ward, A. A.</creatorcontrib><creatorcontrib>Abd‐El‐Messieh, S. L.</creatorcontrib><title>Polymer/liquid crystal nanocomposites for energy storage applications</title><title>Polymer engineering and science</title><description>High‐dielectric constant (high‐K) polymer nanocomposites based on nematic liquid crystals and CaCu3Ti4O12 (CCTO) nanoparticles have been prepared. The host matrix is polymer dispersed liquid crystals (PDLC) in which LC (E7) droplets are dispersed in different polymer blends ratios of poly vinyl chloride/poly aniline (PVC/PANI). The PDLC (PVC/PANI/E7) in the appropriated ratios; (90/10/5), (75/25/5), and (50/50/5) were composited with 10 wt% CCTO nanoparticles. The IR spectra recorded for the PDLC nanocomposites present a spectrum similar to that of pure PDLC but with a slight shift of the peak positions. The addition of PANI and CCTO to PDLC enhances the thermal stability of the nanocomposites. SEM demonstrates agglomerates of CCTO dispersed in the polymer textures. Moreover, the addition of E7 facilitates the integration of PANI in PDLC matrix. The broadband dielectric spectrum shows high‐frequency relaxation in addition to low‐frequency interfacial polarization (Maxwell‐Wagner type polarization). Besides, ε′ at 50 Hz is in the order of 105 for PDLC/CCTO (50/50/5/10) nanocomposite. In addition, the computed energy density is found to be 74.66 J/cm3. This presumed ratio could be accentuated as a potential candidate for energy storage application with respect to the considerations of device fabrications.</description><subject>Addition polymerization</subject><subject>Agglomerates</subject><subject>Aniline</subject><subject>Broadband</subject><subject>calcium copper titanate CCTO nanoparticles</subject><subject>conductivity</subject><subject>dielectric properties</subject><subject>Dielectric relaxation</subject><subject>Dispersion</subject><subject>Electric properties</subject><subject>energy density</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Identification and classification</subject><subject>Infrared spectroscopy</subject><subject>liquid crystal</subject><subject>Liquid crystals</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nematic crystals</subject><subject>Polarization</subject><subject>poly aniline</subject><subject>poly vinyl chloride</subject><subject>Polyanilines</subject><subject>Polymer blends</subject><subject>polymer dispersed liquid crystals</subject><subject>Polymers</subject><subject>Polyvinyl chloride</subject><subject>Spectra</subject><subject>Thermal stability</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10l1r2zAUBmAzVljW7mL_wLCrwZzow5Lly1KyrVDW0vVeKMqxp2JLro5M538_dRlsgQyBJMTzHklwiuI9JWtKCNtM4NdM1C19VayoqFXFJK9fFytCOKu4UupN8RbxkWTLRbsqtndhWEaIm8E9zW5f2rhgMkPpjQ82jFNAlwDLLsQSPMR-KTGFaHoozTQNzprkgseL4qwzA8K7P-t58fB5-3D1tbq5_XJ9dXlTWUEJrRi0zd4CbYA1pOug3ZlGWq5a0SrKKVgLkjR5J2tS17DbN0YZ1kmhBAcr-Hnx4VB2iuFpBkz6MczR5xs1qwXlrWha-Vf1ZgDtfBdSNHZ0aPWlVFLyRjCeVXVC9S-fNEPw0Ll8fOTXJ3weexidPRn4eBTIJsHP1JsZUV9_vz-2n_6xuxmdB8wTuv5HwkPkVGkbA2KETk_RjSYumhL90gY6t4H-3QbZbg72Ob9v-T_Ud9tvh8QvmBmxNA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Labeeb, A. M.</creator><creator>Ibrahim, S. A.</creator><creator>Ward, A. A.</creator><creator>Abd‐El‐Messieh, S. L.</creator><general>John Wiley &amp; Sons, Inc</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0094-213X</orcidid></search><sort><creationdate>202010</creationdate><title>Polymer/liquid crystal nanocomposites for energy storage applications</title><author>Labeeb, A. M. ; Ibrahim, S. A. ; Ward, A. A. ; Abd‐El‐Messieh, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5101-2e97dce17e270ffe9ba76c389598131ecce60713164044ebd7a8a2f65853ec53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Addition polymerization</topic><topic>Agglomerates</topic><topic>Aniline</topic><topic>Broadband</topic><topic>calcium copper titanate CCTO nanoparticles</topic><topic>conductivity</topic><topic>dielectric properties</topic><topic>Dielectric relaxation</topic><topic>Dispersion</topic><topic>Electric properties</topic><topic>energy density</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Identification and classification</topic><topic>Infrared spectroscopy</topic><topic>liquid crystal</topic><topic>Liquid crystals</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nematic crystals</topic><topic>Polarization</topic><topic>poly aniline</topic><topic>poly vinyl chloride</topic><topic>Polyanilines</topic><topic>Polymer blends</topic><topic>polymer dispersed liquid crystals</topic><topic>Polymers</topic><topic>Polyvinyl chloride</topic><topic>Spectra</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labeeb, A. M.</creatorcontrib><creatorcontrib>Ibrahim, S. A.</creatorcontrib><creatorcontrib>Ward, A. A.</creatorcontrib><creatorcontrib>Abd‐El‐Messieh, S. L.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labeeb, A. M.</au><au>Ibrahim, S. A.</au><au>Ward, A. A.</au><au>Abd‐El‐Messieh, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymer/liquid crystal nanocomposites for energy storage applications</atitle><jtitle>Polymer engineering and science</jtitle><date>2020-10</date><risdate>2020</risdate><volume>60</volume><issue>10</issue><spage>2529</spage><epage>2540</epage><pages>2529-2540</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><abstract>High‐dielectric constant (high‐K) polymer nanocomposites based on nematic liquid crystals and CaCu3Ti4O12 (CCTO) nanoparticles have been prepared. The host matrix is polymer dispersed liquid crystals (PDLC) in which LC (E7) droplets are dispersed in different polymer blends ratios of poly vinyl chloride/poly aniline (PVC/PANI). The PDLC (PVC/PANI/E7) in the appropriated ratios; (90/10/5), (75/25/5), and (50/50/5) were composited with 10 wt% CCTO nanoparticles. The IR spectra recorded for the PDLC nanocomposites present a spectrum similar to that of pure PDLC but with a slight shift of the peak positions. The addition of PANI and CCTO to PDLC enhances the thermal stability of the nanocomposites. SEM demonstrates agglomerates of CCTO dispersed in the polymer textures. Moreover, the addition of E7 facilitates the integration of PANI in PDLC matrix. The broadband dielectric spectrum shows high‐frequency relaxation in addition to low‐frequency interfacial polarization (Maxwell‐Wagner type polarization). Besides, ε′ at 50 Hz is in the order of 105 for PDLC/CCTO (50/50/5/10) nanocomposite. In addition, the computed energy density is found to be 74.66 J/cm3. This presumed ratio could be accentuated as a potential candidate for energy storage application with respect to the considerations of device fabrications.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pen.25491</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0094-213X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2020-10, Vol.60 (10), p.2529-2540
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_2451395796
source Wiley Online Library All Journals
subjects Addition polymerization
Agglomerates
Aniline
Broadband
calcium copper titanate CCTO nanoparticles
conductivity
dielectric properties
Dielectric relaxation
Dispersion
Electric properties
energy density
Energy storage
Flux density
Identification and classification
Infrared spectroscopy
liquid crystal
Liquid crystals
Nanocomposites
Nanoparticles
Nematic crystals
Polarization
poly aniline
poly vinyl chloride
Polyanilines
Polymer blends
polymer dispersed liquid crystals
Polymers
Polyvinyl chloride
Spectra
Thermal stability
title Polymer/liquid crystal nanocomposites for energy storage applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymer/liquid%20crystal%20nanocomposites%20for%20energy%20storage%20applications&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Labeeb,%20A.%20M.&rft.date=2020-10&rft.volume=60&rft.issue=10&rft.spage=2529&rft.epage=2540&rft.pages=2529-2540&rft.issn=0032-3888&rft.eissn=1548-2634&rft_id=info:doi/10.1002/pen.25491&rft_dat=%3Cgale_proqu%3EA686637523%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451395796&rft_id=info:pmid/&rft_galeid=A686637523&rfr_iscdi=true