Quantitative structure–activity relationship methods in the discovery and development of antibacterials
With the pressing issue of antibiotic resistance, there is a constant need for new antibiotics. However, the fact that traditional methods of drug discovery are expensive and time‐consuming has discouraged the pharmaceutical industry, leaving the burden of discovery to research institutions. This is...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Computational molecular science 2020-11, Vol.10 (6), p.e1472-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e1472 |
container_title | Wiley interdisciplinary reviews. Computational molecular science |
container_volume | 10 |
creator | Suay‐Garcia, Beatriz Bueso‐Bordils, Jose Ignacio Falcó, Antonio Pérez‐Gracia, María Teresa Antón‐Fos, Gerardo Alemán‐López, Pedro |
description | With the pressing issue of antibiotic resistance, there is a constant need for new antibiotics. However, the fact that traditional methods of drug discovery are expensive and time‐consuming has discouraged the pharmaceutical industry, leaving the burden of discovery to research institutions. This is where quantitative structure–activity relationship (QSAR) methods become a key tool in fighting multidrug‐resistant bacteria, seeing as they provide useful information for the rational design of new active molecules at a minimal cost. A variety of linear and nonlinear statistical methods are used to develop these models based on the 2D or 3D representations of the molecules. QSAR models have proven to be effective in rapidly providing lead compound candidates against resistant bacteria such as methicillin‐resistant Staphylococcus aureus, Escherichia coli, Pseudomonas spp., Bacillus subtilis, or Mycobacterium tuberculosis. Moreover, QSAR methods allow for a deeper analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles. The information obtained from QSAR studies makes optimizing an existing drug simpler, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.
This article is categorized under:
Computer and Information Science > Chemoinformatics
Software > Molecular Modeling
QSAR methods allow for a deep analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria. |
doi_str_mv | 10.1002/wcms.1472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451332328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451332328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-9da631b689f1fc61574ed88ca09afa2eca31c193425ddd8e4dfa6a2b8a2b32123</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWGoPvkHAk4dtN8l-ZI9S_IKKiIrHkCazNGW_TLIte_MdfEOfxKwVbwaGGSa_-Q_zR-icxHMSx3SxV7WbkySnR2hC8rSIYs6T4786z07RzLltHF5SEMrIBJmnXjbeeOnNDrDztle-t_D18SlVaBk_YAtV-G0btzEdrsFvWu2wabDfANbGqXYHdsCy0VjDDqq2q6HxuC3xKLwOMmCNrNwZOilDgtlvnqLXm-uX5V20ery9X16tIkWLnEaFlhkj64wXJSlVRtI8Ac25knEhS0lBSUYUKVhCU601h0SXMpN0zUMwGo6aoouDbmfb9x6cF9u2t01YKWiSEsYoozxQlwdK2dY5C6XorKmlHQSJxWimGM0Uo5mBXRzYvalg-B8Ub8uH55-Jb5y6erM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451332328</pqid></control><display><type>article</type><title>Quantitative structure–activity relationship methods in the discovery and development of antibacterials</title><source>Wiley Journals</source><creator>Suay‐Garcia, Beatriz ; Bueso‐Bordils, Jose Ignacio ; Falcó, Antonio ; Pérez‐Gracia, María Teresa ; Antón‐Fos, Gerardo ; Alemán‐López, Pedro</creator><creatorcontrib>Suay‐Garcia, Beatriz ; Bueso‐Bordils, Jose Ignacio ; Falcó, Antonio ; Pérez‐Gracia, María Teresa ; Antón‐Fos, Gerardo ; Alemán‐López, Pedro</creatorcontrib><description>With the pressing issue of antibiotic resistance, there is a constant need for new antibiotics. However, the fact that traditional methods of drug discovery are expensive and time‐consuming has discouraged the pharmaceutical industry, leaving the burden of discovery to research institutions. This is where quantitative structure–activity relationship (QSAR) methods become a key tool in fighting multidrug‐resistant bacteria, seeing as they provide useful information for the rational design of new active molecules at a minimal cost. A variety of linear and nonlinear statistical methods are used to develop these models based on the 2D or 3D representations of the molecules. QSAR models have proven to be effective in rapidly providing lead compound candidates against resistant bacteria such as methicillin‐resistant Staphylococcus aureus, Escherichia coli, Pseudomonas spp., Bacillus subtilis, or Mycobacterium tuberculosis. Moreover, QSAR methods allow for a deeper analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles. The information obtained from QSAR studies makes optimizing an existing drug simpler, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.
This article is categorized under:
Computer and Information Science > Chemoinformatics
Software > Molecular Modeling
QSAR methods allow for a deep analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.</description><identifier>ISSN: 1759-0876</identifier><identifier>EISSN: 1759-0884</identifier><identifier>DOI: 10.1002/wcms.1472</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>antibiotic development ; Antibiotic resistance ; Antibiotics ; Bacteria ; Disease resistance ; Drug resistance ; Drugs ; E coli ; Lead compounds ; machine learning ; Methicillin ; Molecular modelling ; Optimization ; Pharmaceutical industry ; Pharmacokinetics ; Profiles ; QSAR ; Research facilities ; Research institutions ; resistant bacteria ; Statistical analysis ; Statistical methods ; Structure-activity relationships ; Three dimensional models ; Tuberculosis ; Two dimensional models</subject><ispartof>Wiley interdisciplinary reviews. Computational molecular science, 2020-11, Vol.10 (6), p.e1472-n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-9da631b689f1fc61574ed88ca09afa2eca31c193425ddd8e4dfa6a2b8a2b32123</citedby><cites>FETCH-LOGICAL-c2972-9da631b689f1fc61574ed88ca09afa2eca31c193425ddd8e4dfa6a2b8a2b32123</cites><orcidid>0000-0002-9335-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcms.1472$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcms.1472$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Suay‐Garcia, Beatriz</creatorcontrib><creatorcontrib>Bueso‐Bordils, Jose Ignacio</creatorcontrib><creatorcontrib>Falcó, Antonio</creatorcontrib><creatorcontrib>Pérez‐Gracia, María Teresa</creatorcontrib><creatorcontrib>Antón‐Fos, Gerardo</creatorcontrib><creatorcontrib>Alemán‐López, Pedro</creatorcontrib><title>Quantitative structure–activity relationship methods in the discovery and development of antibacterials</title><title>Wiley interdisciplinary reviews. Computational molecular science</title><description>With the pressing issue of antibiotic resistance, there is a constant need for new antibiotics. However, the fact that traditional methods of drug discovery are expensive and time‐consuming has discouraged the pharmaceutical industry, leaving the burden of discovery to research institutions. This is where quantitative structure–activity relationship (QSAR) methods become a key tool in fighting multidrug‐resistant bacteria, seeing as they provide useful information for the rational design of new active molecules at a minimal cost. A variety of linear and nonlinear statistical methods are used to develop these models based on the 2D or 3D representations of the molecules. QSAR models have proven to be effective in rapidly providing lead compound candidates against resistant bacteria such as methicillin‐resistant Staphylococcus aureus, Escherichia coli, Pseudomonas spp., Bacillus subtilis, or Mycobacterium tuberculosis. Moreover, QSAR methods allow for a deeper analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles. The information obtained from QSAR studies makes optimizing an existing drug simpler, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.
This article is categorized under:
Computer and Information Science > Chemoinformatics
Software > Molecular Modeling
QSAR methods allow for a deep analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.</description><subject>antibiotic development</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Disease resistance</subject><subject>Drug resistance</subject><subject>Drugs</subject><subject>E coli</subject><subject>Lead compounds</subject><subject>machine learning</subject><subject>Methicillin</subject><subject>Molecular modelling</subject><subject>Optimization</subject><subject>Pharmaceutical industry</subject><subject>Pharmacokinetics</subject><subject>Profiles</subject><subject>QSAR</subject><subject>Research facilities</subject><subject>Research institutions</subject><subject>resistant bacteria</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Structure-activity relationships</subject><subject>Three dimensional models</subject><subject>Tuberculosis</subject><subject>Two dimensional models</subject><issn>1759-0876</issn><issn>1759-0884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWGoPvkHAk4dtN8l-ZI9S_IKKiIrHkCazNGW_TLIte_MdfEOfxKwVbwaGGSa_-Q_zR-icxHMSx3SxV7WbkySnR2hC8rSIYs6T4786z07RzLltHF5SEMrIBJmnXjbeeOnNDrDztle-t_D18SlVaBk_YAtV-G0btzEdrsFvWu2wabDfANbGqXYHdsCy0VjDDqq2q6HxuC3xKLwOMmCNrNwZOilDgtlvnqLXm-uX5V20ery9X16tIkWLnEaFlhkj64wXJSlVRtI8Ac25knEhS0lBSUYUKVhCU601h0SXMpN0zUMwGo6aoouDbmfb9x6cF9u2t01YKWiSEsYoozxQlwdK2dY5C6XorKmlHQSJxWimGM0Uo5mBXRzYvalg-B8Ub8uH55-Jb5y6erM</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Suay‐Garcia, Beatriz</creator><creator>Bueso‐Bordils, Jose Ignacio</creator><creator>Falcó, Antonio</creator><creator>Pérez‐Gracia, María Teresa</creator><creator>Antón‐Fos, Gerardo</creator><creator>Alemán‐López, Pedro</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-9335-1920</orcidid></search><sort><creationdate>202011</creationdate><title>Quantitative structure–activity relationship methods in the discovery and development of antibacterials</title><author>Suay‐Garcia, Beatriz ; Bueso‐Bordils, Jose Ignacio ; Falcó, Antonio ; Pérez‐Gracia, María Teresa ; Antón‐Fos, Gerardo ; Alemán‐López, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-9da631b689f1fc61574ed88ca09afa2eca31c193425ddd8e4dfa6a2b8a2b32123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>antibiotic development</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Disease resistance</topic><topic>Drug resistance</topic><topic>Drugs</topic><topic>E coli</topic><topic>Lead compounds</topic><topic>machine learning</topic><topic>Methicillin</topic><topic>Molecular modelling</topic><topic>Optimization</topic><topic>Pharmaceutical industry</topic><topic>Pharmacokinetics</topic><topic>Profiles</topic><topic>QSAR</topic><topic>Research facilities</topic><topic>Research institutions</topic><topic>resistant bacteria</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Structure-activity relationships</topic><topic>Three dimensional models</topic><topic>Tuberculosis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suay‐Garcia, Beatriz</creatorcontrib><creatorcontrib>Bueso‐Bordils, Jose Ignacio</creatorcontrib><creatorcontrib>Falcó, Antonio</creatorcontrib><creatorcontrib>Pérez‐Gracia, María Teresa</creatorcontrib><creatorcontrib>Antón‐Fos, Gerardo</creatorcontrib><creatorcontrib>Alemán‐López, Pedro</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suay‐Garcia, Beatriz</au><au>Bueso‐Bordils, Jose Ignacio</au><au>Falcó, Antonio</au><au>Pérez‐Gracia, María Teresa</au><au>Antón‐Fos, Gerardo</au><au>Alemán‐López, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative structure–activity relationship methods in the discovery and development of antibacterials</atitle><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle><date>2020-11</date><risdate>2020</risdate><volume>10</volume><issue>6</issue><spage>e1472</spage><epage>n/a</epage><pages>e1472-n/a</pages><issn>1759-0876</issn><eissn>1759-0884</eissn><abstract>With the pressing issue of antibiotic resistance, there is a constant need for new antibiotics. However, the fact that traditional methods of drug discovery are expensive and time‐consuming has discouraged the pharmaceutical industry, leaving the burden of discovery to research institutions. This is where quantitative structure–activity relationship (QSAR) methods become a key tool in fighting multidrug‐resistant bacteria, seeing as they provide useful information for the rational design of new active molecules at a minimal cost. A variety of linear and nonlinear statistical methods are used to develop these models based on the 2D or 3D representations of the molecules. QSAR models have proven to be effective in rapidly providing lead compound candidates against resistant bacteria such as methicillin‐resistant Staphylococcus aureus, Escherichia coli, Pseudomonas spp., Bacillus subtilis, or Mycobacterium tuberculosis. Moreover, QSAR methods allow for a deeper analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles. The information obtained from QSAR studies makes optimizing an existing drug simpler, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.
This article is categorized under:
Computer and Information Science > Chemoinformatics
Software > Molecular Modeling
QSAR methods allow for a deep analysis of a library of molecules, selecting those with not only the optimal activity, but also the most favorable pharmacokinetic and toxicological profiles, which is a cost‐effective approach to obtain new treatments against increasingly resistant bacteria.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wcms.1472</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9335-1920</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-0876 |
ispartof | Wiley interdisciplinary reviews. Computational molecular science, 2020-11, Vol.10 (6), p.e1472-n/a |
issn | 1759-0876 1759-0884 |
language | eng |
recordid | cdi_proquest_journals_2451332328 |
source | Wiley Journals |
subjects | antibiotic development Antibiotic resistance Antibiotics Bacteria Disease resistance Drug resistance Drugs E coli Lead compounds machine learning Methicillin Molecular modelling Optimization Pharmaceutical industry Pharmacokinetics Profiles QSAR Research facilities Research institutions resistant bacteria Statistical analysis Statistical methods Structure-activity relationships Three dimensional models Tuberculosis Two dimensional models |
title | Quantitative structure–activity relationship methods in the discovery and development of antibacterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20structure%E2%80%93activity%20relationship%20methods%20in%20the%20discovery%20and%20development%20of%20antibacterials&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20molecular%20science&rft.au=Suay%E2%80%90Garcia,%20Beatriz&rft.date=2020-11&rft.volume=10&rft.issue=6&rft.spage=e1472&rft.epage=n/a&rft.pages=e1472-n/a&rft.issn=1759-0876&rft.eissn=1759-0884&rft_id=info:doi/10.1002/wcms.1472&rft_dat=%3Cproquest_cross%3E2451332328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451332328&rft_id=info:pmid/&rfr_iscdi=true |