Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph
Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ya-Wen Teng Shi, Yishuo Chih-Hua Tai De-Nian, Yang Wang-Chien, Lee Chen, Ming-Syan |
description | Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization with Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves up to 6.7 times of influence spread in large datasets over the state-of-the-art approaches. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2451250679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451250679</sourcerecordid><originalsourceid>FETCH-proquest_journals_24512506793</originalsourceid><addsrcrecordid>eNqNjN0KgjAYQEcQJOU7DLoW5ua0bvuPSLroXoZ-1mRutin9PH0WPUBX51wczgB5lLEwmEWUjpDvXEUIoXFCOWceSve6VB3oHPBRPGQtX6KVRuOFcFDgXlZPLWqZ4xNYZ7RQH8mh-UZS44M2dwXFBfDWiuY6QcNSKAf-j2M03azPy13QWHPrwLVZZTrbb1xGIx5STuJkzv6r3tEGPh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451250679</pqid></control><display><type>article</type><title>Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph</title><source>Free E- Journals</source><creator>Ya-Wen Teng ; Shi, Yishuo ; Chih-Hua Tai ; De-Nian, Yang ; Wang-Chien, Lee ; Chen, Ming-Syan</creator><creatorcontrib>Ya-Wen Teng ; Shi, Yishuo ; Chih-Hua Tai ; De-Nian, Yang ; Wang-Chien, Lee ; Chen, Ming-Syan</creatorcontrib><description>Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization with Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves up to 6.7 times of influence spread in large datasets over the state-of-the-art approaches.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Knowledge bases (artificial intelligence) ; Maximization ; Optimization ; Perception ; Social networks ; Target markets</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Ya-Wen Teng</creatorcontrib><creatorcontrib>Shi, Yishuo</creatorcontrib><creatorcontrib>Chih-Hua Tai</creatorcontrib><creatorcontrib>De-Nian, Yang</creatorcontrib><creatorcontrib>Wang-Chien, Lee</creatorcontrib><creatorcontrib>Chen, Ming-Syan</creatorcontrib><title>Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph</title><title>arXiv.org</title><description>Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization with Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves up to 6.7 times of influence spread in large datasets over the state-of-the-art approaches.</description><subject>Algorithms</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Perception</subject><subject>Social networks</subject><subject>Target markets</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjN0KgjAYQEcQJOU7DLoW5ua0bvuPSLroXoZ-1mRutin9PH0WPUBX51wczgB5lLEwmEWUjpDvXEUIoXFCOWceSve6VB3oHPBRPGQtX6KVRuOFcFDgXlZPLWqZ4xNYZ7RQH8mh-UZS44M2dwXFBfDWiuY6QcNSKAf-j2M03azPy13QWHPrwLVZZTrbb1xGIx5STuJkzv6r3tEGPh8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Ya-Wen Teng</creator><creator>Shi, Yishuo</creator><creator>Chih-Hua Tai</creator><creator>De-Nian, Yang</creator><creator>Wang-Chien, Lee</creator><creator>Chen, Ming-Syan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211001</creationdate><title>Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph</title><author>Ya-Wen Teng ; Shi, Yishuo ; Chih-Hua Tai ; De-Nian, Yang ; Wang-Chien, Lee ; Chen, Ming-Syan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24512506793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Perception</topic><topic>Social networks</topic><topic>Target markets</topic><toplevel>online_resources</toplevel><creatorcontrib>Ya-Wen Teng</creatorcontrib><creatorcontrib>Shi, Yishuo</creatorcontrib><creatorcontrib>Chih-Hua Tai</creatorcontrib><creatorcontrib>De-Nian, Yang</creatorcontrib><creatorcontrib>Wang-Chien, Lee</creatorcontrib><creatorcontrib>Chen, Ming-Syan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ya-Wen Teng</au><au>Shi, Yishuo</au><au>Chih-Hua Tai</au><au>De-Nian, Yang</au><au>Wang-Chien, Lee</au><au>Chen, Ming-Syan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph</atitle><jtitle>arXiv.org</jtitle><date>2021-10-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization with Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves up to 6.7 times of influence spread in large datasets over the state-of-the-art approaches.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2451250679 |
source | Free E- Journals |
subjects | Algorithms Knowledge bases (artificial intelligence) Maximization Optimization Perception Social networks Target markets |
title | Influence Maximization Based on Dynamic Personal Perception in Knowledge Graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Influence%20Maximization%20Based%20on%20Dynamic%20Personal%20Perception%20in%20Knowledge%20Graph&rft.jtitle=arXiv.org&rft.au=Ya-Wen%20Teng&rft.date=2021-10-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2451250679%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451250679&rft_id=info:pmid/&rfr_iscdi=true |