Amplitude noise spectrum of a lock-in amplifier: Application to microcantilever noise measurements

[Display omitted] •Lock-in amplifier is a widely used instrument for high-resolution sensing applications.•Derivation of the lock-in amplifier amplitude noise spectral density as a function of Gaussian input noise sources.•Application to microcantilever noise measurement with thermal force noise and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A. Physical. 2020-09, Vol.312, p.112092, Article 112092
Hauptverfasser: Ruppert, Michael G., Bartlett, Nathan J., Yong, Yuen K., Fleming, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 112092
container_title Sensors and actuators. A. Physical.
container_volume 312
creator Ruppert, Michael G.
Bartlett, Nathan J.
Yong, Yuen K.
Fleming, Andrew J.
description [Display omitted] •Lock-in amplifier is a widely used instrument for high-resolution sensing applications.•Derivation of the lock-in amplifier amplitude noise spectral density as a function of Gaussian input noise sources.•Application to microcantilever noise measurement with thermal force noise and electronic sensor noise. The lock-in amplifier is a crucial component in many applications requiring high-resolution displacement sensing; it's purpose is to estimate the amplitude and phase of a periodic signal, potentially corrupted by noise, at a frequency determined by a reference signal. Where the noise can be approximated by a stationary Gaussian process, such as thermal force noise and electronic sensor noise, this article derives the amplitude noise spectral density of the lock-in-amplifier output. The proposed method is demonstrated by predicting the demodulated noise spectrum of a microcantilever for dynamic-mode atomic force microscopy to determine the cantilever on-resonance thermal noise, the cantilever tracking bandwidth and the electronic noise floor. The estimates are shown to closely match experimental results over a wide range of operating conditions.
doi_str_mv 10.1016/j.sna.2020.112092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451169391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424719322873</els_id><sourcerecordid>2451169391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7976c376604ee9d341243dc99d526b674391b701321b4de62ce486155ffb7ff93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcB1x3zajLR1TD4ggE3ug5tegupbVOTdMB_b4a6dnUfnHPu5UPolpINJVTed5s4VhtGWJ4pI5qdoRXdKl5wIvU5WuWNKAQT6hJdxdgRQjhXaoXq3TD1Ls0N4NG7CDhOYFOYB-xbXOHe26_Cjbg6qVoH4QHvptzaKjk_4uTx4GzwthqT6-EI4S9lgCrOAQYYU7xGF23VR7j5q2v0-fz0sX8tDu8vb_vdobCclalQWknLlZREAOiGC8oEb6zWTclkLZXgmtaKUM5oLRqQzILYSlqWbVurttV8je6W3Cn47xliMp2fw5hPGiZKSqXOCVlFF1V-O8YArZmCG6rwYygxJ5SmMxmlOaE0C8rseVw8kN8_ZgomWgejhcaFTMs03v3j_gUbtHwP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451169391</pqid></control><display><type>article</type><title>Amplitude noise spectrum of a lock-in amplifier: Application to microcantilever noise measurements</title><source>Elsevier ScienceDirect Journals</source><creator>Ruppert, Michael G. ; Bartlett, Nathan J. ; Yong, Yuen K. ; Fleming, Andrew J.</creator><creatorcontrib>Ruppert, Michael G. ; Bartlett, Nathan J. ; Yong, Yuen K. ; Fleming, Andrew J.</creatorcontrib><description>[Display omitted] •Lock-in amplifier is a widely used instrument for high-resolution sensing applications.•Derivation of the lock-in amplifier amplitude noise spectral density as a function of Gaussian input noise sources.•Application to microcantilever noise measurement with thermal force noise and electronic sensor noise. The lock-in amplifier is a crucial component in many applications requiring high-resolution displacement sensing; it's purpose is to estimate the amplitude and phase of a periodic signal, potentially corrupted by noise, at a frequency determined by a reference signal. Where the noise can be approximated by a stationary Gaussian process, such as thermal force noise and electronic sensor noise, this article derives the amplitude noise spectral density of the lock-in-amplifier output. The proposed method is demonstrated by predicting the demodulated noise spectrum of a microcantilever for dynamic-mode atomic force microscopy to determine the cantilever on-resonance thermal noise, the cantilever tracking bandwidth and the electronic noise floor. The estimates are shown to closely match experimental results over a wide range of operating conditions.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2020.112092</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amplitudes ; Atomic force microscopy ; Demodulation ; Estimation ; Gaussian process ; Lock in amplifiers ; Lock-in amplifier ; Noise ; Noise prediction ; Noise spectral density ; Receivers &amp; amplifiers ; Signal processing ; Signal to noise ratio ; Thermal noise</subject><ispartof>Sensors and actuators. A. Physical., 2020-09, Vol.312, p.112092, Article 112092</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-7976c376604ee9d341243dc99d526b674391b701321b4de62ce486155ffb7ff93</citedby><cites>FETCH-LOGICAL-c325t-7976c376604ee9d341243dc99d526b674391b701321b4de62ce486155ffb7ff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0924424719322873$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ruppert, Michael G.</creatorcontrib><creatorcontrib>Bartlett, Nathan J.</creatorcontrib><creatorcontrib>Yong, Yuen K.</creatorcontrib><creatorcontrib>Fleming, Andrew J.</creatorcontrib><title>Amplitude noise spectrum of a lock-in amplifier: Application to microcantilever noise measurements</title><title>Sensors and actuators. A. Physical.</title><description>[Display omitted] •Lock-in amplifier is a widely used instrument for high-resolution sensing applications.•Derivation of the lock-in amplifier amplitude noise spectral density as a function of Gaussian input noise sources.•Application to microcantilever noise measurement with thermal force noise and electronic sensor noise. The lock-in amplifier is a crucial component in many applications requiring high-resolution displacement sensing; it's purpose is to estimate the amplitude and phase of a periodic signal, potentially corrupted by noise, at a frequency determined by a reference signal. Where the noise can be approximated by a stationary Gaussian process, such as thermal force noise and electronic sensor noise, this article derives the amplitude noise spectral density of the lock-in-amplifier output. The proposed method is demonstrated by predicting the demodulated noise spectrum of a microcantilever for dynamic-mode atomic force microscopy to determine the cantilever on-resonance thermal noise, the cantilever tracking bandwidth and the electronic noise floor. The estimates are shown to closely match experimental results over a wide range of operating conditions.</description><subject>Amplitudes</subject><subject>Atomic force microscopy</subject><subject>Demodulation</subject><subject>Estimation</subject><subject>Gaussian process</subject><subject>Lock in amplifiers</subject><subject>Lock-in amplifier</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Noise spectral density</subject><subject>Receivers &amp; amplifiers</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Thermal noise</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcB1x3zajLR1TD4ggE3ug5tegupbVOTdMB_b4a6dnUfnHPu5UPolpINJVTed5s4VhtGWJ4pI5qdoRXdKl5wIvU5WuWNKAQT6hJdxdgRQjhXaoXq3TD1Ls0N4NG7CDhOYFOYB-xbXOHe26_Cjbg6qVoH4QHvptzaKjk_4uTx4GzwthqT6-EI4S9lgCrOAQYYU7xGF23VR7j5q2v0-fz0sX8tDu8vb_vdobCclalQWknLlZREAOiGC8oEb6zWTclkLZXgmtaKUM5oLRqQzILYSlqWbVurttV8je6W3Cn47xliMp2fw5hPGiZKSqXOCVlFF1V-O8YArZmCG6rwYygxJ5SmMxmlOaE0C8rseVw8kN8_ZgomWgejhcaFTMs03v3j_gUbtHwP</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Ruppert, Michael G.</creator><creator>Bartlett, Nathan J.</creator><creator>Yong, Yuen K.</creator><creator>Fleming, Andrew J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20200901</creationdate><title>Amplitude noise spectrum of a lock-in amplifier: Application to microcantilever noise measurements</title><author>Ruppert, Michael G. ; Bartlett, Nathan J. ; Yong, Yuen K. ; Fleming, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7976c376604ee9d341243dc99d526b674391b701321b4de62ce486155ffb7ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Atomic force microscopy</topic><topic>Demodulation</topic><topic>Estimation</topic><topic>Gaussian process</topic><topic>Lock in amplifiers</topic><topic>Lock-in amplifier</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Noise spectral density</topic><topic>Receivers &amp; amplifiers</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruppert, Michael G.</creatorcontrib><creatorcontrib>Bartlett, Nathan J.</creatorcontrib><creatorcontrib>Yong, Yuen K.</creatorcontrib><creatorcontrib>Fleming, Andrew J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruppert, Michael G.</au><au>Bartlett, Nathan J.</au><au>Yong, Yuen K.</au><au>Fleming, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amplitude noise spectrum of a lock-in amplifier: Application to microcantilever noise measurements</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>312</volume><spage>112092</spage><pages>112092-</pages><artnum>112092</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>[Display omitted] •Lock-in amplifier is a widely used instrument for high-resolution sensing applications.•Derivation of the lock-in amplifier amplitude noise spectral density as a function of Gaussian input noise sources.•Application to microcantilever noise measurement with thermal force noise and electronic sensor noise. The lock-in amplifier is a crucial component in many applications requiring high-resolution displacement sensing; it's purpose is to estimate the amplitude and phase of a periodic signal, potentially corrupted by noise, at a frequency determined by a reference signal. Where the noise can be approximated by a stationary Gaussian process, such as thermal force noise and electronic sensor noise, this article derives the amplitude noise spectral density of the lock-in-amplifier output. The proposed method is demonstrated by predicting the demodulated noise spectrum of a microcantilever for dynamic-mode atomic force microscopy to determine the cantilever on-resonance thermal noise, the cantilever tracking bandwidth and the electronic noise floor. The estimates are shown to closely match experimental results over a wide range of operating conditions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2020.112092</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2020-09, Vol.312, p.112092, Article 112092
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2451169391
source Elsevier ScienceDirect Journals
subjects Amplitudes
Atomic force microscopy
Demodulation
Estimation
Gaussian process
Lock in amplifiers
Lock-in amplifier
Noise
Noise prediction
Noise spectral density
Receivers & amplifiers
Signal processing
Signal to noise ratio
Thermal noise
title Amplitude noise spectrum of a lock-in amplifier: Application to microcantilever noise measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amplitude%20noise%20spectrum%20of%20a%20lock-in%20amplifier:%20Application%20to%20microcantilever%20noise%20measurements&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Ruppert,%20Michael%20G.&rft.date=2020-09-01&rft.volume=312&rft.spage=112092&rft.pages=112092-&rft.artnum=112092&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2020.112092&rft_dat=%3Cproquest_cross%3E2451169391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451169391&rft_id=info:pmid/&rft_els_id=S0924424719322873&rfr_iscdi=true