S3ML: A Secure Serving System for Machine Learning Inference
We present S3ML, a secure serving system for machine learning inference in this paper. S3ML runs machine learning models in Intel SGX enclaves to protect users' privacy. S3ML designs a secure key management service to construct flexible privacy-preserving server clusters and proposes novel SGX-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ma, Junming Yu, Chaofan Zhou, Aihui Wu, Bingzhe Wu, Xibin Chen, Xingyu Chen, Xiangqun Wang, Lei Cao, Donggang |
description | We present S3ML, a secure serving system for machine learning inference in this paper. S3ML runs machine learning models in Intel SGX enclaves to protect users' privacy. S3ML designs a secure key management service to construct flexible privacy-preserving server clusters and proposes novel SGX-aware load balancing and scaling methods to satisfy users' Service-Level Objectives. We have implemented S3ML based on Kubernetes as a low-overhead, high-available, and scalable system. We demonstrate the system performance and effectiveness of S3ML through extensive experiments on a series of widely-used models. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2450882234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450882234</sourcerecordid><originalsourceid>FETCH-proquest_journals_24508822343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCTb29bFScFQITk0uLUoFUkVlmXnpCsGVxSWpuQpp-UUKvonJGZl5qQo-qYlFeSA5z7y01KLUvORUHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzIxNbCwMDIyNjEmThUAeFc2LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450882234</pqid></control><display><type>article</type><title>S3ML: A Secure Serving System for Machine Learning Inference</title><source>Free E- Journals</source><creator>Ma, Junming ; Yu, Chaofan ; Zhou, Aihui ; Wu, Bingzhe ; Wu, Xibin ; Chen, Xingyu ; Chen, Xiangqun ; Wang, Lei ; Cao, Donggang</creator><creatorcontrib>Ma, Junming ; Yu, Chaofan ; Zhou, Aihui ; Wu, Bingzhe ; Wu, Xibin ; Chen, Xingyu ; Chen, Xiangqun ; Wang, Lei ; Cao, Donggang</creatorcontrib><description>We present S3ML, a secure serving system for machine learning inference in this paper. S3ML runs machine learning models in Intel SGX enclaves to protect users' privacy. S3ML designs a secure key management service to construct flexible privacy-preserving server clusters and proposes novel SGX-aware load balancing and scaling methods to satisfy users' Service-Level Objectives. We have implemented S3ML based on Kubernetes as a low-overhead, high-available, and scalable system. We demonstrate the system performance and effectiveness of S3ML through extensive experiments on a series of widely-used models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inference ; Machine learning ; Privacy ; Service introduction ; User satisfaction</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Ma, Junming</creatorcontrib><creatorcontrib>Yu, Chaofan</creatorcontrib><creatorcontrib>Zhou, Aihui</creatorcontrib><creatorcontrib>Wu, Bingzhe</creatorcontrib><creatorcontrib>Wu, Xibin</creatorcontrib><creatorcontrib>Chen, Xingyu</creatorcontrib><creatorcontrib>Chen, Xiangqun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Cao, Donggang</creatorcontrib><title>S3ML: A Secure Serving System for Machine Learning Inference</title><title>arXiv.org</title><description>We present S3ML, a secure serving system for machine learning inference in this paper. S3ML runs machine learning models in Intel SGX enclaves to protect users' privacy. S3ML designs a secure key management service to construct flexible privacy-preserving server clusters and proposes novel SGX-aware load balancing and scaling methods to satisfy users' Service-Level Objectives. We have implemented S3ML based on Kubernetes as a low-overhead, high-available, and scalable system. We demonstrate the system performance and effectiveness of S3ML through extensive experiments on a series of widely-used models.</description><subject>Inference</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>Service introduction</subject><subject>User satisfaction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCTb29bFScFQITk0uLUoFUkVlmXnpCsGVxSWpuQpp-UUKvonJGZl5qQo-qYlFeSA5z7y01KLUvORUHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzIxNbCwMDIyNjEmThUAeFc2LA</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Ma, Junming</creator><creator>Yu, Chaofan</creator><creator>Zhou, Aihui</creator><creator>Wu, Bingzhe</creator><creator>Wu, Xibin</creator><creator>Chen, Xingyu</creator><creator>Chen, Xiangqun</creator><creator>Wang, Lei</creator><creator>Cao, Donggang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201013</creationdate><title>S3ML: A Secure Serving System for Machine Learning Inference</title><author>Ma, Junming ; Yu, Chaofan ; Zhou, Aihui ; Wu, Bingzhe ; Wu, Xibin ; Chen, Xingyu ; Chen, Xiangqun ; Wang, Lei ; Cao, Donggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24508822343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Inference</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>Service introduction</topic><topic>User satisfaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Ma, Junming</creatorcontrib><creatorcontrib>Yu, Chaofan</creatorcontrib><creatorcontrib>Zhou, Aihui</creatorcontrib><creatorcontrib>Wu, Bingzhe</creatorcontrib><creatorcontrib>Wu, Xibin</creatorcontrib><creatorcontrib>Chen, Xingyu</creatorcontrib><creatorcontrib>Chen, Xiangqun</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Cao, Donggang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Junming</au><au>Yu, Chaofan</au><au>Zhou, Aihui</au><au>Wu, Bingzhe</au><au>Wu, Xibin</au><au>Chen, Xingyu</au><au>Chen, Xiangqun</au><au>Wang, Lei</au><au>Cao, Donggang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>S3ML: A Secure Serving System for Machine Learning Inference</atitle><jtitle>arXiv.org</jtitle><date>2020-10-13</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present S3ML, a secure serving system for machine learning inference in this paper. S3ML runs machine learning models in Intel SGX enclaves to protect users' privacy. S3ML designs a secure key management service to construct flexible privacy-preserving server clusters and proposes novel SGX-aware load balancing and scaling methods to satisfy users' Service-Level Objectives. We have implemented S3ML based on Kubernetes as a low-overhead, high-available, and scalable system. We demonstrate the system performance and effectiveness of S3ML through extensive experiments on a series of widely-used models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2450882234 |
source | Free E- Journals |
subjects | Inference Machine learning Privacy Service introduction User satisfaction |
title | S3ML: A Secure Serving System for Machine Learning Inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=S3ML:%20A%20Secure%20Serving%20System%20for%20Machine%20Learning%20Inference&rft.jtitle=arXiv.org&rft.au=Ma,%20Junming&rft.date=2020-10-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2450882234%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450882234&rft_id=info:pmid/&rfr_iscdi=true |