Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte

Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2020-11, Vol.26 (11), p.5685-5696
Hauptverfasser: Sarkar, Ila Jogesh Ramala, Peera, Shaik Gouse, Chetty, Raghuram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5696
container_issue 11
container_start_page 5685
container_title Ionics
container_volume 26
creator Sarkar, Ila Jogesh Ramala
Peera, Shaik Gouse
Chetty, Raghuram
description Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e − transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm −2 . Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.
doi_str_mv 10.1007/s11581-020-03722-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450781707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450781707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1Iax98ebEkUEkCJooLa83tlog7MOtoNIR8MJuCEnwUn46ShGo9G892b0EXLK4ZwDyIvAeVFxBgIYZFIIJvbIgFelYCBL2CcDGOWSScjlITkKYQ5QllzIAXmf4Ofbx12qMTU6arsOkTbouxdsaOvdggZnu4aFqCNS45xvul7HzvVpWCwtvlIdaLPyurZI3et6hj312KzMVoMWTfTuN7nrqbZP2nY9_uzsOuIxOWi1DXjy3YfkcXL1ML5h0_vr2_HllJmMjyLDWrYmg83njca6KIU0rdYmz1qUo6rNqxp0g5AXdd3Wo7TniJBVBfBMJF82JGe73KV3zysMUc3dyvfppBJ5AbLiEmRSiZ3KeBeCx1YtfbfQfq04qA1utcOtEm61xa1EMmU7U0jifob-L_of1xdH14fX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450781707</pqid></control><display><type>article</type><title>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</title><source>SpringerLink Journals</source><creator>Sarkar, Ila Jogesh Ramala ; Peera, Shaik Gouse ; Chetty, Raghuram</creator><creatorcontrib>Sarkar, Ila Jogesh Ramala ; Peera, Shaik Gouse ; Chetty, Raghuram</creatorcontrib><description>Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e − transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm −2 . Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03722-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerated tests ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Coordination compounds ; Durability ; Electrocatalysts ; Electrochemistry ; Energy Storage ; Ethylenediaminetetraacetic acids ; Fuel cells ; Iron ; Nitrogen ; Optical and Electronic Materials ; Original Paper ; Oxygen ; Pyrolysis ; Renewable and Green Energy ; Solid state ; Sucrose</subject><ispartof>Ionics, 2020-11, Vol.26 (11), p.5685-5696</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</citedby><cites>FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03722-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03722-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sarkar, Ila Jogesh Ramala</creatorcontrib><creatorcontrib>Peera, Shaik Gouse</creatorcontrib><creatorcontrib>Chetty, Raghuram</creatorcontrib><title>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e − transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm −2 . Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.</description><subject>Accelerated tests</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Coordination compounds</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Fuel cells</subject><subject>Iron</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Pyrolysis</subject><subject>Renewable and Green Energy</subject><subject>Solid state</subject><subject>Sucrose</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwASpL1Iax98ebEkUEkCJooLa83tlog7MOtoNIR8MJuCEnwUn46ShGo9G892b0EXLK4ZwDyIvAeVFxBgIYZFIIJvbIgFelYCBL2CcDGOWSScjlITkKYQ5QllzIAXmf4Ofbx12qMTU6arsOkTbouxdsaOvdggZnu4aFqCNS45xvul7HzvVpWCwtvlIdaLPyurZI3et6hj312KzMVoMWTfTuN7nrqbZP2nY9_uzsOuIxOWi1DXjy3YfkcXL1ML5h0_vr2_HllJmMjyLDWrYmg83njca6KIU0rdYmz1qUo6rNqxp0g5AXdd3Wo7TniJBVBfBMJF82JGe73KV3zysMUc3dyvfppBJ5AbLiEmRSiZ3KeBeCx1YtfbfQfq04qA1utcOtEm61xa1EMmU7U0jifob-L_of1xdH14fX</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sarkar, Ila Jogesh Ramala</creator><creator>Peera, Shaik Gouse</creator><creator>Chetty, Raghuram</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</title><author>Sarkar, Ila Jogesh Ramala ; Peera, Shaik Gouse ; Chetty, Raghuram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Coordination compounds</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Fuel cells</topic><topic>Iron</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Pyrolysis</topic><topic>Renewable and Green Energy</topic><topic>Solid state</topic><topic>Sucrose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Ila Jogesh Ramala</creatorcontrib><creatorcontrib>Peera, Shaik Gouse</creatorcontrib><creatorcontrib>Chetty, Raghuram</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Ila Jogesh Ramala</au><au>Peera, Shaik Gouse</au><au>Chetty, Raghuram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>26</volume><issue>11</issue><spage>5685</spage><epage>5696</epage><pages>5685-5696</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e − transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm −2 . Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03722-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2020-11, Vol.26 (11), p.5685-5696
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2450781707
source SpringerLink Journals
subjects Accelerated tests
Catalysts
Chemical synthesis
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Coordination compounds
Durability
Electrocatalysts
Electrochemistry
Energy Storage
Ethylenediaminetetraacetic acids
Fuel cells
Iron
Nitrogen
Optical and Electronic Materials
Original Paper
Oxygen
Pyrolysis
Renewable and Green Energy
Solid state
Sucrose
title Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%E2%80%93N%E2%80%93C%20catalyst%20derived%20from%20solid-state%20coordination%20complex%20as%20durable%20oxygen%20reduction%20electrocatalyst%20in%20alkaline%20electrolyte&rft.jtitle=Ionics&rft.au=Sarkar,%20Ila%20Jogesh%20Ramala&rft.date=2020-11-01&rft.volume=26&rft.issue=11&rft.spage=5685&rft.epage=5696&rft.pages=5685-5696&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03722-2&rft_dat=%3Cproquest_cross%3E2450781707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450781707&rft_id=info:pmid/&rfr_iscdi=true