Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte
Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters s...
Gespeichert in:
Veröffentlicht in: | Ionics 2020-11, Vol.26 (11), p.5685-5696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5696 |
---|---|
container_issue | 11 |
container_start_page | 5685 |
container_title | Ionics |
container_volume | 26 |
creator | Sarkar, Ila Jogesh Ramala Peera, Shaik Gouse Chetty, Raghuram |
description | Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e
−
transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm
−2
. Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions. |
doi_str_mv | 10.1007/s11581-020-03722-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450781707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450781707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</originalsourceid><addsrcrecordid>eNp9kD1OAzEQhS0EEiFwASpL1Iax98ebEkUEkCJooLa83tlog7MOtoNIR8MJuCEnwUn46ShGo9G892b0EXLK4ZwDyIvAeVFxBgIYZFIIJvbIgFelYCBL2CcDGOWSScjlITkKYQ5QllzIAXmf4Ofbx12qMTU6arsOkTbouxdsaOvdggZnu4aFqCNS45xvul7HzvVpWCwtvlIdaLPyurZI3et6hj312KzMVoMWTfTuN7nrqbZP2nY9_uzsOuIxOWi1DXjy3YfkcXL1ML5h0_vr2_HllJmMjyLDWrYmg83njca6KIU0rdYmz1qUo6rNqxp0g5AXdd3Wo7TniJBVBfBMJF82JGe73KV3zysMUc3dyvfppBJ5AbLiEmRSiZ3KeBeCx1YtfbfQfq04qA1utcOtEm61xa1EMmU7U0jifob-L_of1xdH14fX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450781707</pqid></control><display><type>article</type><title>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</title><source>SpringerLink Journals</source><creator>Sarkar, Ila Jogesh Ramala ; Peera, Shaik Gouse ; Chetty, Raghuram</creator><creatorcontrib>Sarkar, Ila Jogesh Ramala ; Peera, Shaik Gouse ; Chetty, Raghuram</creatorcontrib><description>Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e
−
transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm
−2
. Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03722-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accelerated tests ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Coordination compounds ; Durability ; Electrocatalysts ; Electrochemistry ; Energy Storage ; Ethylenediaminetetraacetic acids ; Fuel cells ; Iron ; Nitrogen ; Optical and Electronic Materials ; Original Paper ; Oxygen ; Pyrolysis ; Renewable and Green Energy ; Solid state ; Sucrose</subject><ispartof>Ionics, 2020-11, Vol.26 (11), p.5685-5696</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</citedby><cites>FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03722-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03722-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sarkar, Ila Jogesh Ramala</creatorcontrib><creatorcontrib>Peera, Shaik Gouse</creatorcontrib><creatorcontrib>Chetty, Raghuram</creatorcontrib><title>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e
−
transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm
−2
. Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.</description><subject>Accelerated tests</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Coordination compounds</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Fuel cells</subject><subject>Iron</subject><subject>Nitrogen</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Oxygen</subject><subject>Pyrolysis</subject><subject>Renewable and Green Energy</subject><subject>Solid state</subject><subject>Sucrose</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQhS0EEiFwASpL1Iax98ebEkUEkCJooLa83tlog7MOtoNIR8MJuCEnwUn46ShGo9G892b0EXLK4ZwDyIvAeVFxBgIYZFIIJvbIgFelYCBL2CcDGOWSScjlITkKYQ5QllzIAXmf4Ofbx12qMTU6arsOkTbouxdsaOvdggZnu4aFqCNS45xvul7HzvVpWCwtvlIdaLPyurZI3et6hj312KzMVoMWTfTuN7nrqbZP2nY9_uzsOuIxOWi1DXjy3YfkcXL1ML5h0_vr2_HllJmMjyLDWrYmg83njca6KIU0rdYmz1qUo6rNqxp0g5AXdd3Wo7TniJBVBfBMJF82JGe73KV3zysMUc3dyvfppBJ5AbLiEmRSiZ3KeBeCx1YtfbfQfq04qA1utcOtEm61xa1EMmU7U0jifob-L_of1xdH14fX</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Sarkar, Ila Jogesh Ramala</creator><creator>Peera, Shaik Gouse</creator><creator>Chetty, Raghuram</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</title><author>Sarkar, Ila Jogesh Ramala ; Peera, Shaik Gouse ; Chetty, Raghuram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-eb7fc306127daeb5627cfaac43fe798f48b0ade045bbfb95621ee038501323063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Coordination compounds</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Fuel cells</topic><topic>Iron</topic><topic>Nitrogen</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Oxygen</topic><topic>Pyrolysis</topic><topic>Renewable and Green Energy</topic><topic>Solid state</topic><topic>Sucrose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Ila Jogesh Ramala</creatorcontrib><creatorcontrib>Peera, Shaik Gouse</creatorcontrib><creatorcontrib>Chetty, Raghuram</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Ila Jogesh Ramala</au><au>Peera, Shaik Gouse</au><au>Chetty, Raghuram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>26</volume><issue>11</issue><spage>5685</spage><epage>5696</epage><pages>5685-5696</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Nitrogen-doped Fe-based carbon electrocatalyst (Fe–N–C) is developed by a one-pot pyrolysis method, using a solid-state Fe-EDTA coordination complex. The synthesized catalyst was analytically evaluated by various physical and electrochemical measurements. The effect of various synthetic parameters such as sucrose and EDTA and the effect of metal contents were systematically evaluated. The synthesized Fe–N–C shows significant oxygen reduction activity with half-wave potential of 0.81 V, closer to the commercial Pt/C catalyst, with a nearly 3.9 e
−
transferred per oxygen molecule. The developed catalyst also shows admirable stability under repeated potential cycling conditions, when compared to the Pt/C catalyst. In a single-cell fuel cell performance analysis, the Fe–N–C catalyst exhibited a peak power density of 118 mW cm
−2
. Moreover, the Fe–N–C showed remarkable durability during the accelerated stress test (AST) at highly corrosive conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03722-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2020-11, Vol.26 (11), p.5685-5696 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2450781707 |
source | SpringerLink Journals |
subjects | Accelerated tests Catalysts Chemical synthesis Chemistry Chemistry and Materials Science Condensed Matter Physics Coordination compounds Durability Electrocatalysts Electrochemistry Energy Storage Ethylenediaminetetraacetic acids Fuel cells Iron Nitrogen Optical and Electronic Materials Original Paper Oxygen Pyrolysis Renewable and Green Energy Solid state Sucrose |
title | Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fe%E2%80%93N%E2%80%93C%20catalyst%20derived%20from%20solid-state%20coordination%20complex%20as%20durable%20oxygen%20reduction%20electrocatalyst%20in%20alkaline%20electrolyte&rft.jtitle=Ionics&rft.au=Sarkar,%20Ila%20Jogesh%20Ramala&rft.date=2020-11-01&rft.volume=26&rft.issue=11&rft.spage=5685&rft.epage=5696&rft.pages=5685-5696&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03722-2&rft_dat=%3Cproquest_cross%3E2450781707%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450781707&rft_id=info:pmid/&rfr_iscdi=true |