Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment

Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2020-10, Vol.35 (19), p.2587-2596
Hauptverfasser: Lloreda-Jurado, P.J., Wilke, S.K., Scotti, K., Paúl-Escolano, A., Dunand, D.C., Sepúlveda, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2596
container_issue 19
container_start_page 2587
container_title Journal of materials research
container_volume 35
creator Lloreda-Jurado, P.J.
Wilke, S.K.
Scotti, K.
Paúl-Escolano, A.
Dunand, D.C.
Sepúlveda, R.
description Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure suffers morphological changes and a decrease in the effective porosity. In this work, two different pore structures of Fe-foams fabricated by freeze-casting have been produced: constant (CP) and gradient (GP) pore size. CP Fe-foams were obtained by employing a double-sided cooling technique to minimize gradients in pore width that result when using one-sided, constant cooling solidification techniques. GP Fe-foams were manufactured using a fixed-temperature cold plate. Optical microscopy and X-ray tomography were employed to characterize the pore structure and, for GP Fe-foams, to investigate the effect of redox cycling. After redox cycling, GP Fe-foams exhibited significant pore degradation.
doi_str_mv 10.1557/jmr.2020.175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450710572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2020_175</cupid><sourcerecordid>2450710572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9ef373a305c8389593dcd501230318445cd0e12621e635ce2e9f8f1e12ea13523</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhi1EJULbW3-AJa7d4M_s7hFF5UOqxAF6XrneceIouw4z3lZw4t4j_7C_BC-JxAlx8cgzj9-RH8aupFhKa-u3uwGXSqhyq-0LtlDCmMpqtXrJFqJpTKVaaV6x10Q7IaQVtVmwpy8ZJ58nhOefvw6YPBDFccMR9i7HNNI2HoinwAMC_IDKO8o8Yhp5SG4gHtw9Ru8y9Pwx5i1_cBjTRJzSPvYxzKOSwrEQxN3Y80Oi_Cdl3rIFl3nGcg4w5gt2Ftye4PJUz9nd-5uv64_V7ecPn9bvbiuvjchVC0HX2mlhfaOb1ra6970VUmmhZWOM9b0AqVZKwkpbDwra0ARZWuCktkqfszfH3PLfbxNQ7nZpwrGs7JQpWqSw9UxdHymPiQghdAeMg8PvnRTdrLsrurtZd1d0F7w64lSwcQP4N_Qf_PIU74aisN_Afx78Boi2lSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450710572</pqid></control><display><type>article</type><title>Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Lloreda-Jurado, P.J. ; Wilke, S.K. ; Scotti, K. ; Paúl-Escolano, A. ; Dunand, D.C. ; Sepúlveda, R.</creator><creatorcontrib>Lloreda-Jurado, P.J. ; Wilke, S.K. ; Scotti, K. ; Paúl-Escolano, A. ; Dunand, D.C. ; Sepúlveda, R.</creatorcontrib><description>Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure suffers morphological changes and a decrease in the effective porosity. In this work, two different pore structures of Fe-foams fabricated by freeze-casting have been produced: constant (CP) and gradient (GP) pore size. CP Fe-foams were obtained by employing a double-sided cooling technique to minimize gradients in pore width that result when using one-sided, constant cooling solidification techniques. GP Fe-foams were manufactured using a fixed-temperature cold plate. Optical microscopy and X-ray tomography were employed to characterize the pore structure and, for GP Fe-foams, to investigate the effect of redox cycling. After redox cycling, GP Fe-foams exhibited significant pore degradation.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2020.175</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Aluminum ; Applied and Technical Physics ; Biomaterials ; Cast iron ; Casting ; Cooling ; Cycles ; Directional solidification ; Fluids ; Foams ; Heat ; Heat treatment ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Microscopy ; Morphology ; Nanotechnology ; Optical microscopy ; Pore size ; Porosity ; Porous materials ; Production capacity ; Sintering ; Solidification ; Solids ; Temperature ; Velocity</subject><ispartof>Journal of materials research, 2020-10, Vol.35 (19), p.2587-2596</ispartof><rights>Copyright © Materials Research Society 2020</rights><rights>The Materials Research Society 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9ef373a305c8389593dcd501230318445cd0e12621e635ce2e9f8f1e12ea13523</citedby><cites>FETCH-LOGICAL-c340t-9ef373a305c8389593dcd501230318445cd0e12621e635ce2e9f8f1e12ea13523</cites><orcidid>0000-0002-7195-8131 ; 0000-0003-0783-6006 ; 0000-0002-9139-9605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2020.175$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291420001752/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Lloreda-Jurado, P.J.</creatorcontrib><creatorcontrib>Wilke, S.K.</creatorcontrib><creatorcontrib>Scotti, K.</creatorcontrib><creatorcontrib>Paúl-Escolano, A.</creatorcontrib><creatorcontrib>Dunand, D.C.</creatorcontrib><creatorcontrib>Sepúlveda, R.</creatorcontrib><title>Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure suffers morphological changes and a decrease in the effective porosity. In this work, two different pore structures of Fe-foams fabricated by freeze-casting have been produced: constant (CP) and gradient (GP) pore size. CP Fe-foams were obtained by employing a double-sided cooling technique to minimize gradients in pore width that result when using one-sided, constant cooling solidification techniques. GP Fe-foams were manufactured using a fixed-temperature cold plate. Optical microscopy and X-ray tomography were employed to characterize the pore structure and, for GP Fe-foams, to investigate the effect of redox cycling. After redox cycling, GP Fe-foams exhibited significant pore degradation.</description><subject>Aluminum</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Cast iron</subject><subject>Casting</subject><subject>Cooling</subject><subject>Cycles</subject><subject>Directional solidification</subject><subject>Fluids</subject><subject>Foams</subject><subject>Heat</subject><subject>Heat treatment</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Optical microscopy</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Production capacity</subject><subject>Sintering</subject><subject>Solidification</subject><subject>Solids</subject><subject>Temperature</subject><subject>Velocity</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1vEzEQhi1EJULbW3-AJa7d4M_s7hFF5UOqxAF6XrneceIouw4z3lZw4t4j_7C_BC-JxAlx8cgzj9-RH8aupFhKa-u3uwGXSqhyq-0LtlDCmMpqtXrJFqJpTKVaaV6x10Q7IaQVtVmwpy8ZJ58nhOefvw6YPBDFccMR9i7HNNI2HoinwAMC_IDKO8o8Yhp5SG4gHtw9Ru8y9Pwx5i1_cBjTRJzSPvYxzKOSwrEQxN3Y80Oi_Cdl3rIFl3nGcg4w5gt2Ftye4PJUz9nd-5uv64_V7ecPn9bvbiuvjchVC0HX2mlhfaOb1ra6970VUmmhZWOM9b0AqVZKwkpbDwra0ARZWuCktkqfszfH3PLfbxNQ7nZpwrGs7JQpWqSw9UxdHymPiQghdAeMg8PvnRTdrLsrurtZd1d0F7w64lSwcQP4N_Qf_PIU74aisN_Afx78Boi2lSc</recordid><startdate>20201014</startdate><enddate>20201014</enddate><creator>Lloreda-Jurado, P.J.</creator><creator>Wilke, S.K.</creator><creator>Scotti, K.</creator><creator>Paúl-Escolano, A.</creator><creator>Dunand, D.C.</creator><creator>Sepúlveda, R.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7195-8131</orcidid><orcidid>https://orcid.org/0000-0003-0783-6006</orcidid><orcidid>https://orcid.org/0000-0002-9139-9605</orcidid></search><sort><creationdate>20201014</creationdate><title>Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment</title><author>Lloreda-Jurado, P.J. ; Wilke, S.K. ; Scotti, K. ; Paúl-Escolano, A. ; Dunand, D.C. ; Sepúlveda, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9ef373a305c8389593dcd501230318445cd0e12621e635ce2e9f8f1e12ea13523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Cast iron</topic><topic>Casting</topic><topic>Cooling</topic><topic>Cycles</topic><topic>Directional solidification</topic><topic>Fluids</topic><topic>Foams</topic><topic>Heat</topic><topic>Heat treatment</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Optical microscopy</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Production capacity</topic><topic>Sintering</topic><topic>Solidification</topic><topic>Solids</topic><topic>Temperature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloreda-Jurado, P.J.</creatorcontrib><creatorcontrib>Wilke, S.K.</creatorcontrib><creatorcontrib>Scotti, K.</creatorcontrib><creatorcontrib>Paúl-Escolano, A.</creatorcontrib><creatorcontrib>Dunand, D.C.</creatorcontrib><creatorcontrib>Sepúlveda, R.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloreda-Jurado, P.J.</au><au>Wilke, S.K.</au><au>Scotti, K.</au><au>Paúl-Escolano, A.</au><au>Dunand, D.C.</au><au>Sepúlveda, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2020-10-14</date><risdate>2020</risdate><volume>35</volume><issue>19</issue><spage>2587</spage><epage>2596</epage><pages>2587-2596</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Iron foams are potential materials for the production, purification, and recuperation of hydrogen through redox systems. They are inexpensive, recyclable, and environmentally friendly. Nevertheless, iron foams cannot be employed repeatedly for redox cycling at high temperatures because the structure suffers morphological changes and a decrease in the effective porosity. In this work, two different pore structures of Fe-foams fabricated by freeze-casting have been produced: constant (CP) and gradient (GP) pore size. CP Fe-foams were obtained by employing a double-sided cooling technique to minimize gradients in pore width that result when using one-sided, constant cooling solidification techniques. GP Fe-foams were manufactured using a fixed-temperature cold plate. Optical microscopy and X-ray tomography were employed to characterize the pore structure and, for GP Fe-foams, to investigate the effect of redox cycling. After redox cycling, GP Fe-foams exhibited significant pore degradation.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2020.175</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7195-8131</orcidid><orcidid>https://orcid.org/0000-0003-0783-6006</orcidid><orcidid>https://orcid.org/0000-0002-9139-9605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2020-10, Vol.35 (19), p.2587-2596
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2450710572
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Aluminum
Applied and Technical Physics
Biomaterials
Cast iron
Casting
Cooling
Cycles
Directional solidification
Fluids
Foams
Heat
Heat treatment
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Microscopy
Morphology
Nanotechnology
Optical microscopy
Pore size
Porosity
Porous materials
Production capacity
Sintering
Solidification
Solids
Temperature
Velocity
title Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%E2%80%93processing%20relationships%20of%20freeze-cast%20iron%20foams%20fabricated%20with%20various%20solidification%20rates%20and%20post-casting%20heat%20treatment&rft.jtitle=Journal%20of%20materials%20research&rft.au=Lloreda-Jurado,%20P.J.&rft.date=2020-10-14&rft.volume=35&rft.issue=19&rft.spage=2587&rft.epage=2596&rft.pages=2587-2596&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2020.175&rft_dat=%3Cproquest_cross%3E2450710572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450710572&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2020_175&rfr_iscdi=true