Robustness of simplified analysis methods for rocking structures on compliant soil
Summary Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is...
Gespeichert in:
Veröffentlicht in: | Earthquake engineering & structural dynamics 2020-11, Vol.49 (14), p.1388-1405 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1405 |
---|---|
container_issue | 14 |
container_start_page | 1388 |
container_title | Earthquake engineering & structural dynamics |
container_volume | 49 |
creator | Sieber, Max Klar, Sebastian Vassiliou, Michalis F. Anastasopoulos, Ioannis |
description | Summary
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance. |
doi_str_mv | 10.1002/eqe.3294 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450706634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450706634</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgCtYq-BMCbtxMvXnMI0sp9QEFsboP6fRGU6eTNncG6b93at26upvvHC6HsWsBEwEg73CHEyWNPmEjAabITKXzUzYCMFVWVbo8ZxdEawBQBZQjtljEZU9di0Q8ek5hs22CD7jirnXNngLxDXafcUXcx8RTrL9C-8GpS33d9QmHVMvreEi5tuMUQ3PJzrxrCK_-7pi9Pczep0_Z_OXxeXo_z5zKQWdCL42ThZIq97p2UiGgNsbocumhrtALXRqshXRoqqLyDlzhSqWF0FJINWY3x9ZtirseqbPr2KfhZ7JS51BCUSg9qNujqlMkSujtNoWNS3srwB72ssNe9rDXQLMj_Q4N7v91dvY6-_U_rG9sEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450706634</pqid></control><display><type>article</type><title>Robustness of simplified analysis methods for rocking structures on compliant soil</title><source>Access via Wiley Online Library</source><creator>Sieber, Max ; Klar, Sebastian ; Vassiliou, Michalis F. ; Anastasopoulos, Ioannis</creator><creatorcontrib>Sieber, Max ; Klar, Sebastian ; Vassiliou, Michalis F. ; Anastasopoulos, Ioannis</creatorcontrib><description>Summary
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.3294</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Analysis ; Benchmarks ; Bridge piers ; Bridges ; Damping ; Design analysis ; Distribution functions ; Dynamical systems ; Empirical analysis ; Finite element method ; Ground motion ; Nonlinear analysis ; Nonlinear dynamics ; Probability theory ; Robustness ; rocking foundations ; rocking structures ; seismic isolation ; simplified analysis methodology ; Soil ; Soil analysis ; Soil dynamics ; Soil structure ; Soils ; soil–structure interaction ; Statistical analysis ; Stiffness ; Stochasticity ; Viscous damping</subject><ispartof>Earthquake engineering & structural dynamics, 2020-11, Vol.49 (14), p.1388-1405</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</citedby><cites>FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</cites><orcidid>0000-0002-1807-1742 ; 0000-0002-4590-2126 ; 0000-0002-8908-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feqe.3294$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feqe.3294$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sieber, Max</creatorcontrib><creatorcontrib>Klar, Sebastian</creatorcontrib><creatorcontrib>Vassiliou, Michalis F.</creatorcontrib><creatorcontrib>Anastasopoulos, Ioannis</creatorcontrib><title>Robustness of simplified analysis methods for rocking structures on compliant soil</title><title>Earthquake engineering & structural dynamics</title><description>Summary
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.</description><subject>Analysis</subject><subject>Benchmarks</subject><subject>Bridge piers</subject><subject>Bridges</subject><subject>Damping</subject><subject>Design analysis</subject><subject>Distribution functions</subject><subject>Dynamical systems</subject><subject>Empirical analysis</subject><subject>Finite element method</subject><subject>Ground motion</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Probability theory</subject><subject>Robustness</subject><subject>rocking foundations</subject><subject>rocking structures</subject><subject>seismic isolation</subject><subject>simplified analysis methodology</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil dynamics</subject><subject>Soil structure</subject><subject>Soils</subject><subject>soil–structure interaction</subject><subject>Statistical analysis</subject><subject>Stiffness</subject><subject>Stochasticity</subject><subject>Viscous damping</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEUBeAgCtYq-BMCbtxMvXnMI0sp9QEFsboP6fRGU6eTNncG6b93at26upvvHC6HsWsBEwEg73CHEyWNPmEjAabITKXzUzYCMFVWVbo8ZxdEawBQBZQjtljEZU9di0Q8ek5hs22CD7jirnXNngLxDXafcUXcx8RTrL9C-8GpS33d9QmHVMvreEi5tuMUQ3PJzrxrCK_-7pi9Pczep0_Z_OXxeXo_z5zKQWdCL42ThZIq97p2UiGgNsbocumhrtALXRqshXRoqqLyDlzhSqWF0FJINWY3x9ZtirseqbPr2KfhZ7JS51BCUSg9qNujqlMkSujtNoWNS3srwB72ssNe9rDXQLMj_Q4N7v91dvY6-_U_rG9sEw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Sieber, Max</creator><creator>Klar, Sebastian</creator><creator>Vassiliou, Michalis F.</creator><creator>Anastasopoulos, Ioannis</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1807-1742</orcidid><orcidid>https://orcid.org/0000-0002-4590-2126</orcidid><orcidid>https://orcid.org/0000-0002-8908-4591</orcidid></search><sort><creationdate>202011</creationdate><title>Robustness of simplified analysis methods for rocking structures on compliant soil</title><author>Sieber, Max ; Klar, Sebastian ; Vassiliou, Michalis F. ; Anastasopoulos, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Benchmarks</topic><topic>Bridge piers</topic><topic>Bridges</topic><topic>Damping</topic><topic>Design analysis</topic><topic>Distribution functions</topic><topic>Dynamical systems</topic><topic>Empirical analysis</topic><topic>Finite element method</topic><topic>Ground motion</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Probability theory</topic><topic>Robustness</topic><topic>rocking foundations</topic><topic>rocking structures</topic><topic>seismic isolation</topic><topic>simplified analysis methodology</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil dynamics</topic><topic>Soil structure</topic><topic>Soils</topic><topic>soil–structure interaction</topic><topic>Statistical analysis</topic><topic>Stiffness</topic><topic>Stochasticity</topic><topic>Viscous damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sieber, Max</creatorcontrib><creatorcontrib>Klar, Sebastian</creatorcontrib><creatorcontrib>Vassiliou, Michalis F.</creatorcontrib><creatorcontrib>Anastasopoulos, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Earthquake engineering & structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sieber, Max</au><au>Klar, Sebastian</au><au>Vassiliou, Michalis F.</au><au>Anastasopoulos, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of simplified analysis methods for rocking structures on compliant soil</atitle><jtitle>Earthquake engineering & structural dynamics</jtitle><date>2020-11</date><risdate>2020</risdate><volume>49</volume><issue>14</issue><spage>1388</spage><epage>1405</epage><pages>1388-1405</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><abstract>Summary
Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eqe.3294</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1807-1742</orcidid><orcidid>https://orcid.org/0000-0002-4590-2126</orcidid><orcidid>https://orcid.org/0000-0002-8908-4591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-8847 |
ispartof | Earthquake engineering & structural dynamics, 2020-11, Vol.49 (14), p.1388-1405 |
issn | 0098-8847 1096-9845 |
language | eng |
recordid | cdi_proquest_journals_2450706634 |
source | Access via Wiley Online Library |
subjects | Analysis Benchmarks Bridge piers Bridges Damping Design analysis Distribution functions Dynamical systems Empirical analysis Finite element method Ground motion Nonlinear analysis Nonlinear dynamics Probability theory Robustness rocking foundations rocking structures seismic isolation simplified analysis methodology Soil Soil analysis Soil dynamics Soil structure Soils soil–structure interaction Statistical analysis Stiffness Stochasticity Viscous damping |
title | Robustness of simplified analysis methods for rocking structures on compliant soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20simplified%20analysis%20methods%20for%20rocking%20structures%20on%20compliant%20soil&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Sieber,%20Max&rft.date=2020-11&rft.volume=49&rft.issue=14&rft.spage=1388&rft.epage=1405&rft.pages=1388-1405&rft.issn=0098-8847&rft.eissn=1096-9845&rft_id=info:doi/10.1002/eqe.3294&rft_dat=%3Cproquest_cross%3E2450706634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450706634&rft_id=info:pmid/&rfr_iscdi=true |