Robustness of simplified analysis methods for rocking structures on compliant soil

Summary Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake engineering & structural dynamics 2020-11, Vol.49 (14), p.1388-1405
Hauptverfasser: Sieber, Max, Klar, Sebastian, Vassiliou, Michalis F., Anastasopoulos, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1405
container_issue 14
container_start_page 1388
container_title Earthquake engineering & structural dynamics
container_volume 49
creator Sieber, Max
Klar, Sebastian
Vassiliou, Michalis F.
Anastasopoulos, Ioannis
description Summary Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.
doi_str_mv 10.1002/eqe.3294
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450706634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450706634</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</originalsourceid><addsrcrecordid>eNp10EtLAzEUBeAgCtYq-BMCbtxMvXnMI0sp9QEFsboP6fRGU6eTNncG6b93at26upvvHC6HsWsBEwEg73CHEyWNPmEjAabITKXzUzYCMFVWVbo8ZxdEawBQBZQjtljEZU9di0Q8ek5hs22CD7jirnXNngLxDXafcUXcx8RTrL9C-8GpS33d9QmHVMvreEi5tuMUQ3PJzrxrCK_-7pi9Pczep0_Z_OXxeXo_z5zKQWdCL42ThZIq97p2UiGgNsbocumhrtALXRqshXRoqqLyDlzhSqWF0FJINWY3x9ZtirseqbPr2KfhZ7JS51BCUSg9qNujqlMkSujtNoWNS3srwB72ssNe9rDXQLMj_Q4N7v91dvY6-_U_rG9sEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450706634</pqid></control><display><type>article</type><title>Robustness of simplified analysis methods for rocking structures on compliant soil</title><source>Access via Wiley Online Library</source><creator>Sieber, Max ; Klar, Sebastian ; Vassiliou, Michalis F. ; Anastasopoulos, Ioannis</creator><creatorcontrib>Sieber, Max ; Klar, Sebastian ; Vassiliou, Michalis F. ; Anastasopoulos, Ioannis</creatorcontrib><description>Summary Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.3294</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Analysis ; Benchmarks ; Bridge piers ; Bridges ; Damping ; Design analysis ; Distribution functions ; Dynamical systems ; Empirical analysis ; Finite element method ; Ground motion ; Nonlinear analysis ; Nonlinear dynamics ; Probability theory ; Robustness ; rocking foundations ; rocking structures ; seismic isolation ; simplified analysis methodology ; Soil ; Soil analysis ; Soil dynamics ; Soil structure ; Soils ; soil–structure interaction ; Statistical analysis ; Stiffness ; Stochasticity ; Viscous damping</subject><ispartof>Earthquake engineering &amp; structural dynamics, 2020-11, Vol.49 (14), p.1388-1405</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</citedby><cites>FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</cites><orcidid>0000-0002-1807-1742 ; 0000-0002-4590-2126 ; 0000-0002-8908-4591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feqe.3294$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feqe.3294$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sieber, Max</creatorcontrib><creatorcontrib>Klar, Sebastian</creatorcontrib><creatorcontrib>Vassiliou, Michalis F.</creatorcontrib><creatorcontrib>Anastasopoulos, Ioannis</creatorcontrib><title>Robustness of simplified analysis methods for rocking structures on compliant soil</title><title>Earthquake engineering &amp; structural dynamics</title><description>Summary Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.</description><subject>Analysis</subject><subject>Benchmarks</subject><subject>Bridge piers</subject><subject>Bridges</subject><subject>Damping</subject><subject>Design analysis</subject><subject>Distribution functions</subject><subject>Dynamical systems</subject><subject>Empirical analysis</subject><subject>Finite element method</subject><subject>Ground motion</subject><subject>Nonlinear analysis</subject><subject>Nonlinear dynamics</subject><subject>Probability theory</subject><subject>Robustness</subject><subject>rocking foundations</subject><subject>rocking structures</subject><subject>seismic isolation</subject><subject>simplified analysis methodology</subject><subject>Soil</subject><subject>Soil analysis</subject><subject>Soil dynamics</subject><subject>Soil structure</subject><subject>Soils</subject><subject>soil–structure interaction</subject><subject>Statistical analysis</subject><subject>Stiffness</subject><subject>Stochasticity</subject><subject>Viscous damping</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEUBeAgCtYq-BMCbtxMvXnMI0sp9QEFsboP6fRGU6eTNncG6b93at26upvvHC6HsWsBEwEg73CHEyWNPmEjAabITKXzUzYCMFVWVbo8ZxdEawBQBZQjtljEZU9di0Q8ek5hs22CD7jirnXNngLxDXafcUXcx8RTrL9C-8GpS33d9QmHVMvreEi5tuMUQ3PJzrxrCK_-7pi9Pczep0_Z_OXxeXo_z5zKQWdCL42ThZIq97p2UiGgNsbocumhrtALXRqshXRoqqLyDlzhSqWF0FJINWY3x9ZtirseqbPr2KfhZ7JS51BCUSg9qNujqlMkSujtNoWNS3srwB72ssNe9rDXQLMj_Q4N7v91dvY6-_U_rG9sEw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Sieber, Max</creator><creator>Klar, Sebastian</creator><creator>Vassiliou, Michalis F.</creator><creator>Anastasopoulos, Ioannis</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1807-1742</orcidid><orcidid>https://orcid.org/0000-0002-4590-2126</orcidid><orcidid>https://orcid.org/0000-0002-8908-4591</orcidid></search><sort><creationdate>202011</creationdate><title>Robustness of simplified analysis methods for rocking structures on compliant soil</title><author>Sieber, Max ; Klar, Sebastian ; Vassiliou, Michalis F. ; Anastasopoulos, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3504-14b9a263235f4ca23e0e499947bf0c8ef1479ec12ae9868fa0a6a7341142123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Benchmarks</topic><topic>Bridge piers</topic><topic>Bridges</topic><topic>Damping</topic><topic>Design analysis</topic><topic>Distribution functions</topic><topic>Dynamical systems</topic><topic>Empirical analysis</topic><topic>Finite element method</topic><topic>Ground motion</topic><topic>Nonlinear analysis</topic><topic>Nonlinear dynamics</topic><topic>Probability theory</topic><topic>Robustness</topic><topic>rocking foundations</topic><topic>rocking structures</topic><topic>seismic isolation</topic><topic>simplified analysis methodology</topic><topic>Soil</topic><topic>Soil analysis</topic><topic>Soil dynamics</topic><topic>Soil structure</topic><topic>Soils</topic><topic>soil–structure interaction</topic><topic>Statistical analysis</topic><topic>Stiffness</topic><topic>Stochasticity</topic><topic>Viscous damping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sieber, Max</creatorcontrib><creatorcontrib>Klar, Sebastian</creatorcontrib><creatorcontrib>Vassiliou, Michalis F.</creatorcontrib><creatorcontrib>Anastasopoulos, Ioannis</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Earthquake engineering &amp; structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sieber, Max</au><au>Klar, Sebastian</au><au>Vassiliou, Michalis F.</au><au>Anastasopoulos, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of simplified analysis methods for rocking structures on compliant soil</atitle><jtitle>Earthquake engineering &amp; structural dynamics</jtitle><date>2020-11</date><risdate>2020</risdate><volume>49</volume><issue>14</issue><spage>1388</spage><epage>1405</epage><pages>1388-1405</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><abstract>Summary Recognizing the beneficial effect of nonlinear soil–foundation response has led to a novel design concept, termed ‘rocking isolation’. The analysis and design of such rocking structures require nonlinear dynamic time history analyses. Analyzing the entire soil–foundation–structure system is computationally demanding, impeding the application of rocking isolation in practice. Therefore, there is an urgent need to develop efficient simplified analysis methods. This paper assesses the robustness of two simplified analysis methods, using (i) a nonlinear and (ii) a bilinear rocking stiffness combined with linear viscous damping. The robustness of the simplified methods is assessed by (i) one‐to‐one comparison with a benchmark finite element (FE) analysis using a selection of ground motions and (ii) statistical comparison of probability distributions of response quantities, which characterize the time history response of rocking systems. A bridge pier (assumed rigid) supported on a square foundation, lying on a stiff clay stratum, is used as an illustrative example. Nonlinear dynamic FE time history analysis serves as a benchmark. Both methods yield reasonably accurate predictions of the maximum rotation θmax. Their stochastic comparison with respect to the empirical cumulative distribution function of θmax reveals that the nonlinear and the bilinear methods are not biased. Thus, both can be used to estimate probabilities of exceeding a certain threshold value of θ. Developed in this paper, the bilinear method is much easier to calibrate than the nonlinear, offering similar performance.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eqe.3294</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1807-1742</orcidid><orcidid>https://orcid.org/0000-0002-4590-2126</orcidid><orcidid>https://orcid.org/0000-0002-8908-4591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-8847
ispartof Earthquake engineering & structural dynamics, 2020-11, Vol.49 (14), p.1388-1405
issn 0098-8847
1096-9845
language eng
recordid cdi_proquest_journals_2450706634
source Access via Wiley Online Library
subjects Analysis
Benchmarks
Bridge piers
Bridges
Damping
Design analysis
Distribution functions
Dynamical systems
Empirical analysis
Finite element method
Ground motion
Nonlinear analysis
Nonlinear dynamics
Probability theory
Robustness
rocking foundations
rocking structures
seismic isolation
simplified analysis methodology
Soil
Soil analysis
Soil dynamics
Soil structure
Soils
soil–structure interaction
Statistical analysis
Stiffness
Stochasticity
Viscous damping
title Robustness of simplified analysis methods for rocking structures on compliant soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20simplified%20analysis%20methods%20for%20rocking%20structures%20on%20compliant%20soil&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Sieber,%20Max&rft.date=2020-11&rft.volume=49&rft.issue=14&rft.spage=1388&rft.epage=1405&rft.pages=1388-1405&rft.issn=0098-8847&rft.eissn=1096-9845&rft_id=info:doi/10.1002/eqe.3294&rft_dat=%3Cproquest_cross%3E2450706634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450706634&rft_id=info:pmid/&rfr_iscdi=true