Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging

Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine. However, these methods have yet to see widespread clinical adoption, in part due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Bashyam, Vishnu M, Doshi, Jimit, Erus, Guray, Srinivasan, Dhivya, Ahmed, Abdulkadir, Habes, Mohamad, Fan, Yong, Masters, Colin L, Maruff, Paul, Zhuo, Chuanjun, Völzke, Henry, Johnson, Sterling C, Fripp, Jurgen, Koutsouleris, Nikolaos, Satterthwaite, Theodore D, Wolf, Daniel H, Gur, Raquel E, Gur, Ruben C, Morris, John C, Albert, Marilyn S, Grabe, Hans J, Resnick, Susan M, Bryan, R Nick, Wolk, David A, Shou, Haochang, Nasrallah, Ilya M, Davatzikos, Christos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bashyam, Vishnu M
Doshi, Jimit
Erus, Guray
Srinivasan, Dhivya
Ahmed, Abdulkadir
Habes, Mohamad
Fan, Yong
Masters, Colin L
Maruff, Paul
Zhuo, Chuanjun
Völzke, Henry
Johnson, Sterling C
Fripp, Jurgen
Koutsouleris, Nikolaos
Satterthwaite, Theodore D
Wolf, Daniel H
Gur, Raquel E
Gur, Ruben C
Morris, John C
Albert, Marilyn S
Grabe, Hans J
Resnick, Susan M
Bryan, R Nick
Wolk, David A
Shou, Haochang
Nasrallah, Ilya M
Davatzikos, Christos
description Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine. However, these methods have yet to see widespread clinical adoption, in part due to limited generalization performance across various imaging devices, acquisition protocols, and patient populations. In this work, we propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain, where accurate model learning and prediction can take place. By learning an unsupervised image to image canonical mapping from diverse datasets to a reference domain using generative deep learning models, we aim to reduce confounding data variation while preserving semantic information, thereby rendering the learning task easier in the reference domain. We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia, leveraging pooled cohorts of neuroimaging MRI data spanning 9 sites and 9701 subjects. Our results indicate a substantial improvement in these tasks in out-of-sample data, even when training is restricted to a single site.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2450686902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450686902</sourcerecordid><originalsourceid>FETCH-proquest_journals_24506869023</originalsourceid><addsrcrecordid>eNqNjUsLAjEMhIsgKOp_CHgWavfh4-hb0Ivoecm6USprura7COKPt4rg1VMyk5kvNdFUQdDvDUOlGqLj3EVKqeKBiqKgKZ5byvQRc1hf8UywQns1rB9YasNwcJrPMCMqYENo-a0m6CiDKbKPvXtbLArvj2Fv7mgz2Jm0ciUgZ7AkJou5p6U5_QiaP8_82hb1E-aOOt_ZEt3FfD9d9QprbhW5MrmYyrI_JSqMZDyMR1IF_6VeO7pOZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450686902</pqid></control><display><type>article</type><title>Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging</title><source>Freely Accessible Journals</source><creator>Bashyam, Vishnu M ; Doshi, Jimit ; Erus, Guray ; Srinivasan, Dhivya ; Ahmed, Abdulkadir ; Habes, Mohamad ; Fan, Yong ; Masters, Colin L ; Maruff, Paul ; Zhuo, Chuanjun ; Völzke, Henry ; Johnson, Sterling C ; Fripp, Jurgen ; Koutsouleris, Nikolaos ; Satterthwaite, Theodore D ; Wolf, Daniel H ; Gur, Raquel E ; Gur, Ruben C ; Morris, John C ; Albert, Marilyn S ; Grabe, Hans J ; Resnick, Susan M ; Bryan, R Nick ; Wolk, David A ; Shou, Haochang ; Nasrallah, Ilya M ; Davatzikos, Christos</creator><creatorcontrib>Bashyam, Vishnu M ; Doshi, Jimit ; Erus, Guray ; Srinivasan, Dhivya ; Ahmed, Abdulkadir ; Habes, Mohamad ; Fan, Yong ; Masters, Colin L ; Maruff, Paul ; Zhuo, Chuanjun ; Völzke, Henry ; Johnson, Sterling C ; Fripp, Jurgen ; Koutsouleris, Nikolaos ; Satterthwaite, Theodore D ; Wolf, Daniel H ; Gur, Raquel E ; Gur, Ruben C ; Morris, John C ; Albert, Marilyn S ; Grabe, Hans J ; Resnick, Susan M ; Bryan, R Nick ; Wolk, David A ; Shou, Haochang ; Nasrallah, Ilya M ; Davatzikos, Christos</creatorcontrib><description>Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine. However, these methods have yet to see widespread clinical adoption, in part due to limited generalization performance across various imaging devices, acquisition protocols, and patient populations. In this work, we propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain, where accurate model learning and prediction can take place. By learning an unsupervised image to image canonical mapping from diverse datasets to a reference domain using generative deep learning models, we aim to reduce confounding data variation while preserving semantic information, thereby rendering the learning task easier in the reference domain. We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia, leveraging pooled cohorts of neuroimaging MRI data spanning 9 sites and 9701 subjects. Our results indicate a substantial improvement in these tasks in out-of-sample data, even when training is restricted to a single site.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biomarkers ; Cognitive tasks ; Deep learning ; Diagnostic systems ; Domains ; Machine learning ; Mapping ; Medical imaging ; Schizophrenia</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Bashyam, Vishnu M</creatorcontrib><creatorcontrib>Doshi, Jimit</creatorcontrib><creatorcontrib>Erus, Guray</creatorcontrib><creatorcontrib>Srinivasan, Dhivya</creatorcontrib><creatorcontrib>Ahmed, Abdulkadir</creatorcontrib><creatorcontrib>Habes, Mohamad</creatorcontrib><creatorcontrib>Fan, Yong</creatorcontrib><creatorcontrib>Masters, Colin L</creatorcontrib><creatorcontrib>Maruff, Paul</creatorcontrib><creatorcontrib>Zhuo, Chuanjun</creatorcontrib><creatorcontrib>Völzke, Henry</creatorcontrib><creatorcontrib>Johnson, Sterling C</creatorcontrib><creatorcontrib>Fripp, Jurgen</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Satterthwaite, Theodore D</creatorcontrib><creatorcontrib>Wolf, Daniel H</creatorcontrib><creatorcontrib>Gur, Raquel E</creatorcontrib><creatorcontrib>Gur, Ruben C</creatorcontrib><creatorcontrib>Morris, John C</creatorcontrib><creatorcontrib>Albert, Marilyn S</creatorcontrib><creatorcontrib>Grabe, Hans J</creatorcontrib><creatorcontrib>Resnick, Susan M</creatorcontrib><creatorcontrib>Bryan, R Nick</creatorcontrib><creatorcontrib>Wolk, David A</creatorcontrib><creatorcontrib>Shou, Haochang</creatorcontrib><creatorcontrib>Nasrallah, Ilya M</creatorcontrib><creatorcontrib>Davatzikos, Christos</creatorcontrib><title>Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging</title><title>arXiv.org</title><description>Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine. However, these methods have yet to see widespread clinical adoption, in part due to limited generalization performance across various imaging devices, acquisition protocols, and patient populations. In this work, we propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain, where accurate model learning and prediction can take place. By learning an unsupervised image to image canonical mapping from diverse datasets to a reference domain using generative deep learning models, we aim to reduce confounding data variation while preserving semantic information, thereby rendering the learning task easier in the reference domain. We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia, leveraging pooled cohorts of neuroimaging MRI data spanning 9 sites and 9701 subjects. Our results indicate a substantial improvement in these tasks in out-of-sample data, even when training is restricted to a single site.</description><subject>Biomarkers</subject><subject>Cognitive tasks</subject><subject>Deep learning</subject><subject>Diagnostic systems</subject><subject>Domains</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Medical imaging</subject><subject>Schizophrenia</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsLAjEMhIsgKOp_CHgWavfh4-hb0Ivoecm6USprura7COKPt4rg1VMyk5kvNdFUQdDvDUOlGqLj3EVKqeKBiqKgKZ5byvQRc1hf8UywQns1rB9YasNwcJrPMCMqYENo-a0m6CiDKbKPvXtbLArvj2Fv7mgz2Jm0ciUgZ7AkJou5p6U5_QiaP8_82hb1E-aOOt_ZEt3FfD9d9QprbhW5MrmYyrI_JSqMZDyMR1IF_6VeO7pOZg</recordid><startdate>20201011</startdate><enddate>20201011</enddate><creator>Bashyam, Vishnu M</creator><creator>Doshi, Jimit</creator><creator>Erus, Guray</creator><creator>Srinivasan, Dhivya</creator><creator>Ahmed, Abdulkadir</creator><creator>Habes, Mohamad</creator><creator>Fan, Yong</creator><creator>Masters, Colin L</creator><creator>Maruff, Paul</creator><creator>Zhuo, Chuanjun</creator><creator>Völzke, Henry</creator><creator>Johnson, Sterling C</creator><creator>Fripp, Jurgen</creator><creator>Koutsouleris, Nikolaos</creator><creator>Satterthwaite, Theodore D</creator><creator>Wolf, Daniel H</creator><creator>Gur, Raquel E</creator><creator>Gur, Ruben C</creator><creator>Morris, John C</creator><creator>Albert, Marilyn S</creator><creator>Grabe, Hans J</creator><creator>Resnick, Susan M</creator><creator>Bryan, R Nick</creator><creator>Wolk, David A</creator><creator>Shou, Haochang</creator><creator>Nasrallah, Ilya M</creator><creator>Davatzikos, Christos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201011</creationdate><title>Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging</title><author>Bashyam, Vishnu M ; Doshi, Jimit ; Erus, Guray ; Srinivasan, Dhivya ; Ahmed, Abdulkadir ; Habes, Mohamad ; Fan, Yong ; Masters, Colin L ; Maruff, Paul ; Zhuo, Chuanjun ; Völzke, Henry ; Johnson, Sterling C ; Fripp, Jurgen ; Koutsouleris, Nikolaos ; Satterthwaite, Theodore D ; Wolf, Daniel H ; Gur, Raquel E ; Gur, Ruben C ; Morris, John C ; Albert, Marilyn S ; Grabe, Hans J ; Resnick, Susan M ; Bryan, R Nick ; Wolk, David A ; Shou, Haochang ; Nasrallah, Ilya M ; Davatzikos, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24506869023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Cognitive tasks</topic><topic>Deep learning</topic><topic>Diagnostic systems</topic><topic>Domains</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Medical imaging</topic><topic>Schizophrenia</topic><toplevel>online_resources</toplevel><creatorcontrib>Bashyam, Vishnu M</creatorcontrib><creatorcontrib>Doshi, Jimit</creatorcontrib><creatorcontrib>Erus, Guray</creatorcontrib><creatorcontrib>Srinivasan, Dhivya</creatorcontrib><creatorcontrib>Ahmed, Abdulkadir</creatorcontrib><creatorcontrib>Habes, Mohamad</creatorcontrib><creatorcontrib>Fan, Yong</creatorcontrib><creatorcontrib>Masters, Colin L</creatorcontrib><creatorcontrib>Maruff, Paul</creatorcontrib><creatorcontrib>Zhuo, Chuanjun</creatorcontrib><creatorcontrib>Völzke, Henry</creatorcontrib><creatorcontrib>Johnson, Sterling C</creatorcontrib><creatorcontrib>Fripp, Jurgen</creatorcontrib><creatorcontrib>Koutsouleris, Nikolaos</creatorcontrib><creatorcontrib>Satterthwaite, Theodore D</creatorcontrib><creatorcontrib>Wolf, Daniel H</creatorcontrib><creatorcontrib>Gur, Raquel E</creatorcontrib><creatorcontrib>Gur, Ruben C</creatorcontrib><creatorcontrib>Morris, John C</creatorcontrib><creatorcontrib>Albert, Marilyn S</creatorcontrib><creatorcontrib>Grabe, Hans J</creatorcontrib><creatorcontrib>Resnick, Susan M</creatorcontrib><creatorcontrib>Bryan, R Nick</creatorcontrib><creatorcontrib>Wolk, David A</creatorcontrib><creatorcontrib>Shou, Haochang</creatorcontrib><creatorcontrib>Nasrallah, Ilya M</creatorcontrib><creatorcontrib>Davatzikos, Christos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashyam, Vishnu M</au><au>Doshi, Jimit</au><au>Erus, Guray</au><au>Srinivasan, Dhivya</au><au>Ahmed, Abdulkadir</au><au>Habes, Mohamad</au><au>Fan, Yong</au><au>Masters, Colin L</au><au>Maruff, Paul</au><au>Zhuo, Chuanjun</au><au>Völzke, Henry</au><au>Johnson, Sterling C</au><au>Fripp, Jurgen</au><au>Koutsouleris, Nikolaos</au><au>Satterthwaite, Theodore D</au><au>Wolf, Daniel H</au><au>Gur, Raquel E</au><au>Gur, Ruben C</au><au>Morris, John C</au><au>Albert, Marilyn S</au><au>Grabe, Hans J</au><au>Resnick, Susan M</au><au>Bryan, R Nick</au><au>Wolk, David A</au><au>Shou, Haochang</au><au>Nasrallah, Ilya M</au><au>Davatzikos, Christos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging</atitle><jtitle>arXiv.org</jtitle><date>2020-10-11</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Conventional and deep learning-based methods have shown great potential in the medical imaging domain, as means for deriving diagnostic, prognostic, and predictive biomarkers, and by contributing to precision medicine. However, these methods have yet to see widespread clinical adoption, in part due to limited generalization performance across various imaging devices, acquisition protocols, and patient populations. In this work, we propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain, where accurate model learning and prediction can take place. By learning an unsupervised image to image canonical mapping from diverse datasets to a reference domain using generative deep learning models, we aim to reduce confounding data variation while preserving semantic information, thereby rendering the learning task easier in the reference domain. We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia, leveraging pooled cohorts of neuroimaging MRI data spanning 9 sites and 9701 subjects. Our results indicate a substantial improvement in these tasks in out-of-sample data, even when training is restricted to a single site.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2450686902
source Freely Accessible Journals
subjects Biomarkers
Cognitive tasks
Deep learning
Diagnostic systems
Domains
Machine learning
Mapping
Medical imaging
Schizophrenia
title Medical Image Harmonization Using Deep Learning Based Canonical Mapping: Toward Robust and Generalizable Learning in Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Medical%20Image%20Harmonization%20Using%20Deep%20Learning%20Based%20Canonical%20Mapping:%20Toward%20Robust%20and%20Generalizable%20Learning%20in%20Imaging&rft.jtitle=arXiv.org&rft.au=Bashyam,%20Vishnu%20M&rft.date=2020-10-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2450686902%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450686902&rft_id=info:pmid/&rfr_iscdi=true