HUJI-KU at MRP~2020: Two Transition-based Neural Parsers
This paper describes the HUJI-KU system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arviv, Ofir Cui, Ruixiang Hershcovich, Daniel |
description | This paper describes the HUJI-KU system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system in the 2019 MRP shared task. Both are transition-based parsers using BERT contextualized embeddings. We generalized TUPA to support the newly-added MRP frameworks and languages, and experimented with multitask learning with the HIT-SCIR parser. We reached 4th place in both the cross-framework and cross-lingual tracks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2450686532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450686532</sourcerecordid><originalsourceid>FETCH-proquest_journals_24506865323</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8Aj18tT1DlVILFHwDQqoMzIwMrBSCCnPVwgpSswrzizJzM_TTUosTk1R8EstLUrMUQhILCpOLSrmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IxNTAzMLM1NjI2PiVAEAGZ8z5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450686532</pqid></control><display><type>article</type><title>HUJI-KU at MRP~2020: Two Transition-based Neural Parsers</title><source>Free E- Journals</source><creator>Arviv, Ofir ; Cui, Ruixiang ; Hershcovich, Daniel</creator><creatorcontrib>Arviv, Ofir ; Cui, Ruixiang ; Hershcovich, Daniel</creatorcontrib><description>This paper describes the HUJI-KU system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system in the 2019 MRP shared task. Both are transition-based parsers using BERT contextualized embeddings. We generalized TUPA to support the newly-added MRP frameworks and languages, and experimented with multitask learning with the HIT-SCIR parser. We reached 4th place in both the cross-framework and cross-lingual tracks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Learning ; Material requirements planning ; Parsers</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Arviv, Ofir</creatorcontrib><creatorcontrib>Cui, Ruixiang</creatorcontrib><creatorcontrib>Hershcovich, Daniel</creatorcontrib><title>HUJI-KU at MRP~2020: Two Transition-based Neural Parsers</title><title>arXiv.org</title><description>This paper describes the HUJI-KU system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system in the 2019 MRP shared task. Both are transition-based parsers using BERT contextualized embeddings. We generalized TUPA to support the newly-added MRP frameworks and languages, and experimented with multitask learning with the HIT-SCIR parser. We reached 4th place in both the cross-framework and cross-lingual tracks.</description><subject>Learning</subject><subject>Material requirements planning</subject><subject>Parsers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8Aj18tT1DlVILFHwDQqoMzIwMrBSCCnPVwgpSswrzizJzM_TTUosTk1R8EstLUrMUQhILCpOLSrmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IxNTAzMLM1NjI2PiVAEAGZ8z5A</recordid><startdate>20201012</startdate><enddate>20201012</enddate><creator>Arviv, Ofir</creator><creator>Cui, Ruixiang</creator><creator>Hershcovich, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201012</creationdate><title>HUJI-KU at MRP~2020: Two Transition-based Neural Parsers</title><author>Arviv, Ofir ; Cui, Ruixiang ; Hershcovich, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24506865323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Learning</topic><topic>Material requirements planning</topic><topic>Parsers</topic><toplevel>online_resources</toplevel><creatorcontrib>Arviv, Ofir</creatorcontrib><creatorcontrib>Cui, Ruixiang</creatorcontrib><creatorcontrib>Hershcovich, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arviv, Ofir</au><au>Cui, Ruixiang</au><au>Hershcovich, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>HUJI-KU at MRP~2020: Two Transition-based Neural Parsers</atitle><jtitle>arXiv.org</jtitle><date>2020-10-12</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This paper describes the HUJI-KU system submission to the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2020 Conference for Computational Language Learning (CoNLL), employing TUPA and the HIT-SCIR parser, which were, respectively, the baseline system and winning system in the 2019 MRP shared task. Both are transition-based parsers using BERT contextualized embeddings. We generalized TUPA to support the newly-added MRP frameworks and languages, and experimented with multitask learning with the HIT-SCIR parser. We reached 4th place in both the cross-framework and cross-lingual tracks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2450686532 |
source | Free E- Journals |
subjects | Learning Material requirements planning Parsers |
title | HUJI-KU at MRP~2020: Two Transition-based Neural Parsers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=HUJI-KU%20at%20MRP~2020:%20Two%20Transition-based%20Neural%20Parsers&rft.jtitle=arXiv.org&rft.au=Arviv,%20Ofir&rft.date=2020-10-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2450686532%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450686532&rft_id=info:pmid/&rfr_iscdi=true |